| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 
 | /* ---------------------------------------------------------------------
*
*  -- PBLAS routine (version 2.0) --
*     University of Tennessee, Knoxville, Oak Ridge National Laboratory,
*     and University of California, Berkeley.
*     April 1, 1998
*
*  ---------------------------------------------------------------------
*/
/*
*  Include files
*/
#include "pblas.h"
#include "PBpblas.h"
#include "PBtools.h"
#include "PBblacs.h"
#include "PBblas.h"
#ifdef __STDC__
void pztrsv_( F_CHAR_T UPLO, F_CHAR_T TRANS, F_CHAR_T DIAG, int * N,
              double * A, int * IA, int * JA, int * DESCA,
              double * X, int * IX, int * JX, int * DESCX,
              int * INCX )
#else
void pztrsv_( UPLO, TRANS, DIAG, N, A, IA, JA, DESCA, X, IX, JX,
              DESCX, INCX )
/*
*  .. Scalar Arguments ..
*/
   F_CHAR_T       DIAG, TRANS, UPLO;
   int            * IA, * INCX, * IX, * JA, * JX, * N;
/*
*  .. Array Arguments ..
*/
   int            * DESCA, * DESCX;
   double         * A, * X;
#endif
{
/*
*  Purpose
*  =======
*
*  PZTRSV  solves one of the systems of equations
*
*    sub( A )*sub( X ) = b,   or   sub( A )'*sub( X ) = b,   or
*
*    conjg( sub( A )' )*sub( X ) = b,
*
*  where
*
*     sub( A ) denotes A(IA:IA+N-1,JA:JA+N-1), and,
*
*     sub( X ) denotes X(IX,JX:JX+N-1) if INCX = M_X,
*                      X(IX:IX+N-1,JX) if INCX = 1 and INCX <> M_X.
*
*  b and sub( X ) are  n element subvectors and  sub( A )  is an  n by n
*  unit, or non-unit, upper or lower triangular submatrix.
*
*  No test for  singularity  or  near-singularity  is included  in  this
*  routine. Such tests must be performed before calling this routine.
*
*  Notes
*  =====
*
*  A description  vector  is associated with each 2D block-cyclicly dis-
*  tributed matrix.  This  vector  stores  the  information  required to
*  establish the  mapping  between a  matrix entry and its corresponding
*  process and memory location.
*
*  In  the  following  comments,   the character _  should  be  read  as
*  "of  the  distributed  matrix".  Let  A  be a generic term for any 2D
*  block cyclicly distributed matrix.  Its description vector is DESC_A:
*
*  NOTATION         STORED IN       EXPLANATION
*  ---------------- --------------- ------------------------------------
*  DTYPE_A (global) DESCA[ DTYPE_ ] The descriptor type.
*  CTXT_A  (global) DESCA[ CTXT_  ] The BLACS context handle, indicating
*                                   the NPROW x NPCOL BLACS process grid
*                                   A  is  distributed over. The context
*                                   itself  is  global,  but  the handle
*                                   (the integer value) may vary.
*  M_A     (global) DESCA[ M_     ] The  number of rows in the distribu-
*                                   ted matrix A, M_A >= 0.
*  N_A     (global) DESCA[ N_     ] The number of columns in the distri-
*                                   buted matrix A, N_A >= 0.
*  IMB_A   (global) DESCA[ IMB_   ] The number of rows of the upper left
*                                   block of the matrix A, IMB_A > 0.
*  INB_A   (global) DESCA[ INB_   ] The  number  of columns of the upper
*                                   left   block   of   the  matrix   A,
*                                   INB_A > 0.
*  MB_A    (global) DESCA[ MB_    ] The blocking factor used to  distri-
*                                   bute the last  M_A-IMB_A  rows of A,
*                                   MB_A > 0.
*  NB_A    (global) DESCA[ NB_    ] The blocking factor used to  distri-
*                                   bute the last  N_A-INB_A  columns of
*                                   A, NB_A > 0.
*  RSRC_A  (global) DESCA[ RSRC_  ] The process row over which the first
*                                   row of the matrix  A is distributed,
*                                   NPROW > RSRC_A >= 0.
*  CSRC_A  (global) DESCA[ CSRC_  ] The  process column  over  which the
*                                   first column of  A  is  distributed.
*                                   NPCOL > CSRC_A >= 0.
*  LLD_A   (local)  DESCA[ LLD_   ] The  leading dimension  of the local
*                                   array  storing  the  local blocks of
*                                   the distributed matrix A,
*                                   IF( Lc( 1, N_A ) > 0 )
*                                      LLD_A >= MAX( 1, Lr( 1, M_A ) )
*                                   ELSE
*                                      LLD_A >= 1.
*
*  Let K be the number of  rows of a matrix A starting at the global in-
*  dex IA,i.e, A( IA:IA+K-1, : ). Lr( IA, K ) denotes the number of rows
*  that the process of row coordinate MYROW ( 0 <= MYROW < NPROW ) would
*  receive if these K rows were distributed over NPROW processes.  If  K
*  is the number of columns of a matrix  A  starting at the global index
*  JA, i.e, A( :, JA:JA+K-1, : ), Lc( JA, K ) denotes the number  of co-
*  lumns that the process MYCOL ( 0 <= MYCOL < NPCOL ) would  receive if
*  these K columns were distributed over NPCOL processes.
*
*  The values of Lr() and Lc() may be determined via a call to the func-
*  tion PB_Cnumroc:
*  Lr( IA, K ) = PB_Cnumroc( K, IA, IMB_A, MB_A, MYROW, RSRC_A, NPROW )
*  Lc( JA, K ) = PB_Cnumroc( K, JA, INB_A, NB_A, MYCOL, CSRC_A, NPCOL )
*
*  Arguments
*  =========
*
*  UPLO    (global input) CHARACTER*1
*          On entry,  UPLO  specifies whether the submatrix  sub( A ) is
*          an upper or lower triangular submatrix as follows:
*
*             UPLO = 'U' or 'u'   sub( A ) is an upper triangular
*                                 submatrix,
*
*             UPLO = 'L' or 'l'   sub( A ) is a  lower triangular
*                                 submatrix.
*
*  TRANS   (global input) CHARACTER*1
*          On entry,  TRANS  specifies the  operation to be performed as
*          follows:
*
*             TRANS = 'N' or 'n'   sub( A )  * sub( X ) = b.
*
*             TRANS = 'T' or 't'   sub( A )' * sub( X ) = b.
*
*             TRANS = 'C' or 'c'   conjg( sub( A )' ) * sub( X ) = b.
*
*  DIAG    (global input) CHARACTER*1
*          On entry,  DIAG  specifies  whether or not  sub( A )  is unit
*          triangular as follows:
*
*             DIAG = 'U' or 'u'  sub( A )  is  assumed to be unit trian-
*                                gular,
*
*             DIAG = 'N' or 'n'  sub( A ) is not assumed to be unit tri-
*                                angular.
*
*  N       (global input) INTEGER
*          On entry,  N specifies the order of the  submatrix  sub( A ).
*          N must be at least zero.
*
*  A       (local input) COMPLEX*16 array
*          On entry, A is an array of dimension (LLD_A, Ka), where Ka is
*          at least Lc( 1, JA+N-1 ).  Before  entry, this array contains
*          the local entries of the matrix A.
*          Before entry with  UPLO = 'U' or 'u', this array contains the
*          local entries corresponding to  the entries of the upper tri-
*          angular submatrix  sub( A ), and the local entries correspon-
*          ding to the entries of the  strictly lower triangular part of
*          the submatrix  sub( A )  are not referenced.
*          Before entry with  UPLO = 'L' or 'l', this array contains the
*          local entries corresponding to  the entries of the lower tri-
*          angular submatrix  sub( A ), and the local entries correspon-
*          ding to the entries of the  strictly upper triangular part of
*          the submatrix  sub( A )  are not referenced.
*          Note  that  when DIAG = 'U' or 'u', the local entries corres-
*          ponding to  the diagonal elements  of the submatrix  sub( A )
*          are not referenced either, but are assumed to be unity.
*
*  IA      (global input) INTEGER
*          On entry, IA  specifies A's global row index, which points to
*          the beginning of the submatrix sub( A ).
*
*  JA      (global input) INTEGER
*          On entry, JA  specifies A's global column index, which points
*          to the beginning of the submatrix sub( A ).
*
*  DESCA   (global and local input) INTEGER array
*          On entry, DESCA  is an integer array of dimension DLEN_. This
*          is the array descriptor for the matrix A.
*
*  X       (local input/local output) COMPLEX*16 array
*          On entry, X is an array of dimension (LLD_X, Kx), where LLD_X
*          is   at  least  MAX( 1, Lr( 1, IX ) )  when  INCX = M_X   and
*          MAX( 1, Lr( 1, IX+N-1 ) )  otherwise,  and,  Kx  is  at least
*          Lc( 1, JX+N-1 )  when  INCX = M_X  and Lc( 1, JX ) otherwise.
*          Before entry, this array  contains  the local  entries of the
*          matrix X. On entry, sub( X ) is the n element right-hand side
*          b. On exit, sub( X ) is overwritten with the solution subvec-
*          tor.
*
*  IX      (global input) INTEGER
*          On entry, IX  specifies X's global row index, which points to
*          the beginning of the submatrix sub( X ).
*
*  JX      (global input) INTEGER
*          On entry, JX  specifies X's global column index, which points
*          to the beginning of the submatrix sub( X ).
*
*  DESCX   (global and local input) INTEGER array
*          On entry, DESCX  is an integer array of dimension DLEN_. This
*          is the array descriptor for the matrix X.
*
*  INCX    (global input) INTEGER
*          On entry,  INCX   specifies  the  global  increment  for  the
*          elements of  X.  Only two values of  INCX   are  supported in
*          this version, namely 1 and M_X. INCX  must not be zero.
*
*  -- Written on April 1, 1998 by
*     Antoine Petitet, University of Tennessee, Knoxville 37996, USA.
*
*  ---------------------------------------------------------------------
*/
/*
*  .. Local Scalars ..
*/
   char           DiagA, TranOp, UploA, Xroc, btop, ctop, * negone, * one,
                  * zero;
   int            Acol, Ai, Aii, Aimb1, Ainb1, Aj, Ajj, Akp, Akq, Ald, Amb, Anb,
                  Anp, Anp0, Anq, Anq0, Arow, Asrc, XACapbX, XACfr, XACld,
                  XACsum, XARapbX, XARfr, XARld, XARsum, Xi, Xj, ctxt, info,
                  ione=1, k, kb, kbnext, kbprev, ktmp, mycol, myrow, nb, notran,
                  nounit, npcol, nprow, size, upper;
   PBTYP_T        * type;
/*
*  .. Local Arrays ..
*/
   int            Ad[DLEN_], Ad0[DLEN_], XACd[DLEN_], XARd[DLEN_], Xd[DLEN_];
   char           * Aptr = NULL, * XAC = NULL, * XAR = NULL;
/* ..
*  .. Executable Statements ..
*
*/
   upper  = ( ( UploA  = Mupcase( F2C_CHAR( UPLO  )[0] ) ) ==  CUPPER );
   notran = ( ( TranOp = Mupcase( F2C_CHAR( TRANS )[0] ) ) == CNOTRAN );
   nounit = ( ( DiagA  = Mupcase( F2C_CHAR( DIAG  )[0] ) ) == CNOUNIT );
   PB_CargFtoC( *IA, *JA, DESCA, &Ai, &Aj, Ad );
   PB_CargFtoC( *IX, *JX, DESCX, &Xi, &Xj, Xd );
#ifndef NO_ARGCHK
/*
*  Test the input parameters
*/
   Cblacs_gridinfo( ( ctxt = Ad[CTXT_] ), &nprow, &npcol, &myrow, &mycol );
   if( !( info = ( ( nprow == -1 ) ? -( 801 + CTXT_ ) : 0 ) ) )
   {
      if( ( !upper ) && ( UploA != CLOWER ) )
      {
         PB_Cwarn( ctxt, __LINE__, "PZTRSV", "Illegal UPLO = %c\n", UploA );
         info = -1;
      }
      else if( ( !notran ) && ( TranOp != CTRAN ) && ( TranOp != CCOTRAN ) )
      {
         PB_Cwarn( ctxt, __LINE__, "PZTRSV", "Illegal TRANS = %c\n", TranOp );
         info = -2;
      }
      else if( ( !nounit ) && ( DiagA != CUNIT ) )
      {
         PB_Cwarn( ctxt, __LINE__, "PZTRSV", "Illegal DIAG = %c\n", DiagA );
         info = -3;
      }
      PB_Cchkmat( ctxt, "PZTRSV", "A", *N, 4, *N, 4, Ai, Aj, Ad,  8, &info );
      PB_Cchkvec( ctxt, "PZTRSV", "X", *N, 4, Xi, Xj, Xd, *INCX, 12, &info );
   }
   if( info ) { PB_Cabort( ctxt, "PZTRSV", info ); return; }
#endif
/*
*  Quick return if possible
*/
   if( *N == 0 ) return;
/*
*  Retrieve process grid information
*/
#ifdef NO_ARGCHK
   Cblacs_gridinfo( ( ctxt = Ad[CTXT_] ), &nprow, &npcol, &myrow, &mycol );
#endif
/*
*  Get type structure
*/
   type = PB_Cztypeset();
   size = type->size; one = type->one; zero = type->zero; negone = type->negone;
/*
*  Compute descriptor Ad0 for sub( A )
*/
   PB_Cdescribe( *N, *N, Ai, Aj, Ad, nprow, npcol, myrow, mycol, &Aii, &Ajj,
                 &Ald, &Aimb1, &Ainb1, &Amb, &Anb, &Arow, &Acol, Ad0 );
/*
*  Computational partitioning size is computed as the product of the logical
*  value returned by pilaenv_ and 2 * lcm( nprow, npcol )
*/
   nb = 2 * pilaenv_( &ctxt, C2F_CHAR( &type->type ) ) *
        PB_Clcm( ( Arow >= 0 ? nprow : 1 ), ( Acol >= 0 ? npcol : 1 ) );
   Xroc = ( *INCX == Xd[M_] ? CROW : CCOLUMN );
   if( notran )
   {
      if( upper )
      {
/*
*  Save current and enforce ring BLACS topologies
*/
         btop = *PB_Ctop( &ctxt, BCAST,   COLUMN, TOP_GET   );
         ctop = *PB_Ctop( &ctxt, COMBINE, ROW,    TOP_GET   );
         (void)  PB_Ctop( &ctxt, BCAST,   COLUMN, TOP_DRING );
         (void)  PB_Ctop( &ctxt, COMBINE, ROW,    TOP_DRING );
/*
*  Remove next line when BLACS combine operations support ring topologies.
*/
         (void)  PB_Ctop( &ctxt, COMBINE, ROW,    TOP_DEFAULT );
/*
*  Reuse sub( X ) and/or create vector XAC in process column owning the last
*  column of sub( A )
*/
         PB_CInOutV2( type, NOCONJG, COLUMN, *N, *N, *N-1, Ad0, 1,
                      ((char *) X), Xi, Xj, Xd, &Xroc, &XAC, XACd,
                      &XACfr, &XACsum, &XACapbX );
/*
*  Create vector XAR in process rows spanned by sub( A )
*/
         PB_COutV( type, ROW,    INIT, *N, *N, Ad0, 1, &XAR, XARd, &XARfr,
                   &XARsum );
/*
*  Retrieve local quantities related to Ad0 -> sub( A )
*/
         Aimb1 = Ad0[IMB_ ]; Ainb1 = Ad0[INB_ ];
         Amb   = Ad0[MB_  ]; Anb   = Ad0[NB_  ];
         Arow  = Ad0[RSRC_]; Acol  = Ad0[CSRC_]; Ald = Ad0[LLD_];
         Anp   = PB_Cnumroc( *N, 0, Aimb1, Amb, myrow, Arow, nprow );
         Anq   = PB_Cnumroc( *N, 0, Ainb1, Anb, mycol, Acol, npcol );
         if( ( Anp > 0 ) && ( Anq > 0 ) )
            Aptr = Mptr( ((char *) A), Aii, Ajj, Ald, size );
         XACld = XACd[LLD_]; XARld = XARd[LLD_];
         for( k = ( ( *N - 1 ) / nb ) * nb; k >= 0; k -= nb )
         {
            ktmp = *N - k; kb = MIN( ktmp, nb );
/*
*  Solve logical diagonal block, XAC contains the solution scattered in multiple
*  process columns and XAR contains the solution replicated in the process rows.
*/
            Akp = PB_Cnumroc( k, 0, Aimb1, Amb, myrow, Arow, nprow );
            Akq = PB_Cnumroc( k, 0, Ainb1, Anb, mycol, Acol, npcol );
            PB_Cptrsv( type, XARsum, &UploA, &TranOp, &DiagA, kb, Aptr, k, k,
                       Ad0, Mptr( XAC, Akp, 0, XACld, size ), 1, Mptr( XAR, 0,
                       Akq, XARld, size ), XARld );
/*
*  Update: only the part of sub( X ) to be solved at the next step is locally
*  updated and combined, the remaining part of the vector to be solved later is
*  only locally updated.
*/
            if( Akp > 0 )
            {
               Anq0 = PB_Cnumroc( kb, k, Ainb1, Anb, mycol, Acol, npcol );
               if( XACsum )
               {
                  kbprev = MIN( k, nb );
                  ktmp   = PB_Cnumroc( kbprev, k-kbprev, Aimb1, Amb, myrow,
                                       Arow, nprow );
                  Akp   -= ktmp;
                  if( ktmp > 0 )
                  {
                     if( Anq0 > 0 )
                        zgemv_( TRANS, &ktmp, &Anq0, negone,
                           Mptr( Aptr, Akp, Akq,   Ald, size ), &Ald,
                           Mptr( XAR,    0, Akq, XARld, size ), &XARld, one,
                           Mptr( XAC,  Akp,   0, XACld, size ), &ione );
                     Asrc = PB_Cindxg2p( k-1, Ainb1, Anb, Acol, Acol, npcol );
                     Czgsum2d( ctxt, ROW, &ctop, ktmp, 1, Mptr( XAC, Akp,
                               0, XACld, size ), XACld, myrow, Asrc );
                     if( mycol != Asrc )
                        zset_( &ktmp, zero, Mptr( XAC, Akp, 0, XACld,
                               size ), &ione );
                  }
                  if( Akp > 0 && Anq0 > 0 )
                     zgemv_( TRANS, &Akp, &Anq0, negone,
                             Mptr( Aptr, 0, Akq,   Ald, size ),   &Ald,
                             Mptr( XAR,  0, Akq, XARld, size ), &XARld, one,
                             XAC, &ione );
               }
               else
               {
                  if( Anq0 > 0 )
                     zgemv_( TRANS, &Akp, &Anq0, negone,
                             Mptr( Aptr, 0, Akq,   Ald, size ),   &Ald,
                             Mptr( XAR,  0, Akq, XARld, size ), &XARld, one,
                             XAC, &ione );
               }
            }
         }
/*
*  Combine the scattered resulting vector XAC
*/
         if( XACsum && ( Anp > 0 ) )
         {
            Czgsum2d( ctxt, ROW, &ctop, Anp, 1, XAC, XACld, myrow,
                      XACd[CSRC_] );
         }
/*
*  sub( X ) := XAC (if necessary)
*/
         if( XACapbX )
         {
            PB_Cpaxpby( type, NOCONJG, *N, 1, one, XAC, 0, 0, XACd, COLUMN,
                        zero, ((char *) X), Xi, Xj, Xd, &Xroc );
         }
/*
*  Restore BLACS topologies
*/
         (void) PB_Ctop( &ctxt, BCAST,   COLUMN, &btop );
         (void) PB_Ctop( &ctxt, COMBINE, ROW,    &ctop );
      }
      else
      {
/*
*  Save current and enforce ring BLACS topologies
*/
         btop = *PB_Ctop( &ctxt, BCAST,   COLUMN, TOP_GET   );
         ctop = *PB_Ctop( &ctxt, COMBINE, ROW,    TOP_GET   );
         (void)  PB_Ctop( &ctxt, BCAST,   COLUMN, TOP_IRING );
         (void)  PB_Ctop( &ctxt, COMBINE, ROW,    TOP_IRING );
/*
*  Remove next line when BLACS combine operations support ring topologies.
*/
         (void)  PB_Ctop( &ctxt, COMBINE, ROW,    TOP_DEFAULT );
/*
*  Reuse sub( X ) and/or create vector XAC in process column owning the first
*  column of sub( A )
*/
         PB_CInOutV2( type, NOCONJG, COLUMN, *N, *N, 0, Ad0, 1,
                      ((char *) X), Xi, Xj, Xd, &Xroc, &XAC, XACd,
                      &XACfr, &XACsum, &XACapbX );
/*
*  Create vector XAR in process rows spanned by sub( A )
*/
         PB_COutV( type, ROW, INIT, *N, *N, Ad0, 1, &XAR, XARd, &XARfr,
                   &XARsum );
/*
*  Retrieve local quantities related to Ad0 -> sub( A )
*/
         Aimb1 = Ad0[IMB_ ]; Ainb1 = Ad0[INB_ ];
         Amb   = Ad0[MB_  ]; Anb   = Ad0[NB_  ];
         Arow  = Ad0[RSRC_]; Acol  = Ad0[CSRC_]; Ald = Ad0[LLD_];
         Anp   = PB_Cnumroc( *N, 0, Aimb1, Amb, myrow, Arow, nprow );
         Anq   = PB_Cnumroc( *N, 0, Ainb1, Anb, mycol, Acol, npcol );
         if( ( Anp > 0 ) && ( Anq > 0 ) )
            Aptr = Mptr( ((char *) A), Aii, Ajj, Ald, size );
         XACld = XACd[LLD_]; XARld = XARd[LLD_];
         for( k = 0; k < *N; k += nb )
         {
            ktmp = *N - k; kb = MIN( ktmp, nb );
/*
*  Solve logical diagonal block, XAC contains the solution scattered in multiple
*  process columns and XAR contains the solution replicated in the process rows.
*/
            Akp = PB_Cnumroc( k, 0, Aimb1, Amb, myrow, Arow, nprow );
            Akq = PB_Cnumroc( k, 0, Ainb1, Anb, mycol, Acol, npcol );
            PB_Cptrsv( type, XARsum, &UploA, &TranOp, &DiagA, kb, Aptr, k, k,
                       Ad0, Mptr( XAC, Akp, 0, XACld, size ), 1, Mptr( XAR, 0,
                       Akq, XARld, size ), XARld );
/*
*  Update: only the part of sub( X ) to be solved at the next step is locally
*  updated and combined, the remaining part of the vector to be solved later is
*  only locally updated.
*/
            Akp = PB_Cnumroc( k+kb, 0, Aimb1, Amb, myrow, Arow, nprow );
            if( ( Anp0 = Anp - Akp ) > 0 )
            {
               Anq0 = PB_Cnumroc( kb, k, Ainb1, Anb, mycol, Acol, npcol );
               if( XACsum )
               {
                  kbnext = ktmp - kb; kbnext = MIN( kbnext, nb );
                  ktmp   = PB_Cnumroc( kbnext, k+kb, Aimb1, Amb, myrow, Arow,
                                       nprow );
                  Anp0  -= ktmp;
                  if( ktmp > 0 )
                  {
                     if( Anq0 > 0 )
                        zgemv_( TRANS, &ktmp, &Anq0, negone,
                          Mptr( Aptr, Akp, Akq,   Ald, size ), &Ald,
                          Mptr( XAR,    0, Akq, XARld, size ), &XARld, one,
                          Mptr( XAC,  Akp,   0, XACld, size ), &ione );
                     Asrc = PB_Cindxg2p( k+kb, Ainb1, Anb, Acol, Acol, npcol );
                     Czgsum2d( ctxt, ROW, &ctop, ktmp, 1, Mptr( XAC, Akp,
                                 0, XACld, size ), XACld, myrow, Asrc );
                     if( mycol != Asrc )
                        zset_( &ktmp, zero, Mptr( XAC, Akp, 0, XACld,
                               size ), &ione );
                  }
                  if( Anp0 > 0 && Anq0 > 0 )
                     zgemv_( TRANS, &Anp0, &Anq0, negone,
                      Mptr( Aptr, Akp+ktmp, Akq,   Ald, size ), &Ald,
                      Mptr( XAR,         0, Akq, XARld, size ), &XARld,
                      one,
                      Mptr( XAC,  Akp+ktmp,   0, XACld, size ), &ione );
               }
               else
               {
                  if( Anq0 > 0 )
                     zgemv_( TRANS, &Anp0, &Anq0, negone,
                          Mptr( Aptr, Akp, Akq,   Ald, size ), &Ald,
                          Mptr( XAR,    0, Akq, XARld, size ), &XARld,
                          one,
                          Mptr( XAC,  Akp,   0, XACld, size ), &ione );
               }
            }
         }
/*
*  Combine the scattered resulting vector XAC
*/
         if( XACsum && ( Anp > 0 ) )
         {
            Czgsum2d( ctxt, ROW, &ctop, Anp, 1, XAC, XACld, myrow,
                      XACd[CSRC_] );
         }
/*
*  sub( X ) := XAC (if necessary)
*/
         if( XACapbX )
         {
            PB_Cpaxpby( type, NOCONJG, *N, 1, one, XAC, 0, 0, XACd,
                        COLUMN, zero, ((char *) X), Xi, Xj, Xd, &Xroc );
         }
/*
*  Restore BLACS topologies
*/
         (void) PB_Ctop( &ctxt, BCAST,   COLUMN, &btop );
         (void) PB_Ctop( &ctxt, COMBINE, ROW,    &ctop );
      }
   }
   else
   {
      if( upper )
      {
/*
*  Save current and enforce ring BLACS topologies
*/
         btop = *PB_Ctop( &ctxt, BCAST,   ROW,    TOP_GET   );
         ctop = *PB_Ctop( &ctxt, COMBINE, COLUMN, TOP_GET   );
         (void)  PB_Ctop( &ctxt, BCAST,   ROW,    TOP_IRING );
         (void)  PB_Ctop( &ctxt, COMBINE, COLUMN, TOP_IRING );
/*
*  Remove next line when BLACS combine operations support ring topologies.
*/
         (void)  PB_Ctop( &ctxt, COMBINE, COLUMN, TOP_DEFAULT );
/*
*  Reuse sub( X ) and/or create vector XAR in process row owning the first row
*  of sub( A )
*/
         PB_CInOutV2( type, NOCONJG, ROW, *N, *N, 0, Ad0, 1,
                      ((char *) X), Xi, Xj, Xd, &Xroc, &XAR, XARd,
                      &XARfr, &XARsum, &XARapbX );
/*
*  Create vector XAC in process columns spanned by sub( A )
*/
         PB_COutV( type, COLUMN, INIT, *N, *N, Ad0, 1, &XAC, XACd, &XACfr,
                   &XACsum );
/*
*  Retrieve local quantities related to Ad0 -> sub( A )
*/
         Aimb1 = Ad0[IMB_ ]; Ainb1 = Ad0[INB_ ];
         Amb   = Ad0[MB_  ]; Anb   = Ad0[NB_  ];
         Arow  = Ad0[RSRC_]; Acol  = Ad0[CSRC_]; Ald = Ad0[LLD_];
         Anp   = PB_Cnumroc( *N, 0, Aimb1, Amb, myrow, Arow, nprow );
         Anq   = PB_Cnumroc( *N, 0, Ainb1, Anb, mycol, Acol, npcol );
         if( ( Anp > 0 ) && ( Anq > 0 ) )
            Aptr = Mptr( ((char *) A), Aii, Ajj, Ald, size );
         XACld = XACd[LLD_]; XARld = XARd[LLD_];
         for( k = 0; k < *N; k += nb )
         {
            ktmp = *N - k; kb = MIN( ktmp, nb );
/*
*  Solve logical diagonal block, XAR contains the solution scattered in multiple
*  process rows and XAC contains the solution replicated in the process columns.
*/
            Akp = PB_Cnumroc( k, 0, Aimb1, Amb, myrow, Arow, nprow );
            Akq = PB_Cnumroc( k, 0, Ainb1, Anb, mycol, Acol, npcol );
            PB_Cptrsv( type, XACsum, &UploA, &TranOp, &DiagA, kb, Aptr, k, k,
                       Ad0, Mptr( XAC, Akp, 0, XACld, size ), 1, Mptr( XAR, 0,
                       Akq, XARld, size ), XARld );
/*
*  Update: only the part of sub( X ) to be solved at the next step is locally
*  updated and combined, the remaining part of the vector to be solved later is
*  only locally updated.
*/
            Akq = PB_Cnumroc( k+kb, 0, Ainb1, Anb, mycol, Acol, npcol );
            if( ( Anq0 = Anq - Akq ) > 0 )
            {
               Anp0 = PB_Cnumroc( kb, k, Aimb1, Amb, myrow, Arow, nprow );
               if( XARsum )
               {
                  kbnext = ktmp - kb; kbnext = MIN( kbnext, nb );
                  ktmp   = PB_Cnumroc( kbnext, k+kb, Ainb1, Anb, mycol, Acol,
                                       npcol );
                  Anq0  -= ktmp;
                  if( ktmp > 0 )
                  {
                     if( Anp0 > 0 )
                        zgemv_( TRANS, &Anp0, &ktmp, negone,
                         Mptr( Aptr, Akp, Akq,   Ald, size ), &Ald,
                         Mptr( XAC,  Akp,   0, XACld, size ), &ione, one,
                         Mptr( XAR,    0, Akq, XARld, size ), &XARld );
                     Asrc = PB_Cindxg2p( k+kb, Aimb1, Amb, Arow, Arow, nprow );
                     Czgsum2d( ctxt, COLUMN, &ctop, 1, ktmp, Mptr( XAR, 0,
                               Akq, XARld, size ), XARld, Asrc, mycol );
                     if( myrow != Asrc )
                        zset_( &ktmp, zero, Mptr( XAR, 0, Akq, XARld,
                               size ), &XARld );
                  }
                  if( Anp0 > 0 && Anq0 > 0 )
                     zgemv_( TRANS, &Anp0, &Anq0, negone,
                     Mptr( Aptr, Akp, Akq+ktmp,   Ald, size ),   &Ald,
                     Mptr( XAC,  Akp,        0, XACld, size ),  &ione, one,
                     Mptr( XAR,    0, Akq+ktmp, XARld, size ), &XARld );
               }
               else
               {
                  if( Anp0 > 0 )
                     zgemv_( TRANS, &Anp0, &Anq0, negone,
                        Mptr( Aptr, Akp, Akq,   Ald, size ),   &Ald,
                        Mptr( XAC,  Akp,   0, XACld, size ),  &ione, one,
                        Mptr( XAR,    0, Akq, XARld, size ), &XARld );
               }
            }
         }
/*
*  Combine the scattered resulting vector XAR
*/
         if( XARsum && ( Anq > 0 ) )
         {
            Czgsum2d( ctxt, COLUMN, &ctop, 1, Anq, XAR, XARld, XARd[RSRC_],
                      mycol );
         }
/*
*  sub( X ) := XAR (if necessary)
*/
         if( XARapbX )
         {
            PB_Cpaxpby( type, NOCONJG, 1, *N, one, XAR, 0, 0, XARd, ROW, zero,
                        ((char *) X), Xi, Xj, Xd, &Xroc );
         }
/*
*  Restore BLACS topologies
*/
         (void) PB_Ctop( &ctxt, BCAST,   ROW,    &btop );
         (void) PB_Ctop( &ctxt, COMBINE, COLUMN, &ctop );
      }
      else
      {
/*
*  Save current and enforce ring BLACS topologies
*/
         btop = *PB_Ctop( &ctxt, BCAST,   ROW,    TOP_GET   );
         ctop = *PB_Ctop( &ctxt, COMBINE, COLUMN, TOP_GET   );
         (void)  PB_Ctop( &ctxt, BCAST,   ROW,    TOP_DRING );
         (void)  PB_Ctop( &ctxt, COMBINE, COLUMN, TOP_DRING );
/*
*  Remove next line when BLACS combine operations support ring topologies.
*/
         (void)  PB_Ctop( &ctxt, COMBINE, COLUMN, TOP_DEFAULT );
/*
*  Reuse sub( X ) and/or create vector XAC in process row owning the last row
*  of sub( A )
*/
         PB_CInOutV2( type, NOCONJG, ROW, *N, *N, *N-1, Ad0, 1,
                      ((char *) X), Xi, Xj, Xd, &Xroc, &XAR, XARd,
                      &XARfr, &XARsum, &XARapbX );
/*
*  Create vector XAC in process columns spanned by sub( A )
*/
         PB_COutV( type, COLUMN, INIT, *N, *N, Ad0, 1, &XAC, XACd, &XACfr,
                   &XACsum );
/*
*  Retrieve local quantities related to Ad0 -> sub( A )
*/
         Aimb1 = Ad0[IMB_ ]; Ainb1 = Ad0[INB_ ];
         Amb   = Ad0[MB_  ]; Anb   = Ad0[NB_  ];
         Arow  = Ad0[RSRC_]; Acol  = Ad0[CSRC_]; Ald = Ad0[LLD_];
         Anp   = PB_Cnumroc( *N, 0, Aimb1, Amb, myrow, Arow, nprow );
         Anq   = PB_Cnumroc( *N, 0, Ainb1, Anb, mycol, Acol, npcol );
         if( ( Anp > 0 ) && ( Anq > 0 ) )
            Aptr = Mptr( ((char *) A), Aii, Ajj, Ald, size );
         XACld = XACd[LLD_]; XARld = XARd[LLD_];
         for( k = ( ( *N - 1 ) / nb ) * nb; k >= 0; k -= nb )
         {
            ktmp = *N - k; kb = MIN( ktmp, nb );
/*
*  Solve logical diagonal block, XAR contains the solution scattered in multiple
*  process rows and XAC contains the solution replicated in the process columns.
*/
            Akp = PB_Cnumroc( k,  0, Aimb1, Amb, myrow, Arow, nprow );
            Akq = PB_Cnumroc( k,  0, Ainb1, Anb, mycol, Acol, npcol );
            PB_Cptrsv( type, XACsum, &UploA, &TranOp, &DiagA, kb, Aptr, k, k,
                       Ad0, Mptr( XAC, Akp, 0, XACld, size ), 1, Mptr( XAR, 0,
                       Akq, XARld, size ), XARld );
/*
*  Update: only the part of sub( X ) to be solved at the next step is locally
*  updated and combined, the remaining part of the vector to be solved later
*  is only locally updated.
*/
            if( Akq > 0 )
            {
               Anp0 = PB_Cnumroc( kb, k, Aimb1, Amb, myrow, Arow, nprow );
               if( XARsum )
               {
                  kbprev = MIN( k, nb );
                  ktmp   = PB_Cnumroc( kbprev, k-kbprev, Ainb1, Anb, mycol,
                                       Acol, npcol );
                  Akq   -= ktmp;
                  if( ktmp > 0 )
                  {
                     if( Anp0 > 0 )
                        zgemv_( TRANS, &Anp0, &ktmp, negone,
                                Mptr( Aptr, Akp, Akq,   Ald, size ), &Ald,
                                Mptr( XAC,  Akp,   0, XACld, size ), &ione, one,
                                Mptr( XAR,    0, Akq, XARld, size ), &XARld );
                     Asrc = PB_Cindxg2p( k-1, Aimb1, Amb, Arow, Arow, nprow );
                     Czgsum2d( ctxt, COLUMN, &ctop, 1, ktmp, Mptr( XAR, 0,
                               Akq, XARld, size ), XARld, Asrc, mycol );
                     if( myrow != Asrc )
                        zset_( &ktmp, zero, Mptr( XAR, 0, Akq, XARld,
                               size ), &XARld );
                  }
                  if( Anp0 > 0 && Akq > 0 )
                     zgemv_( TRANS, &Anp0, &Akq, negone,
                             Mptr( Aptr, Akp, 0,   Ald, size ), &Ald,
                             Mptr( XAC,  Akp, 0, XACld, size ), &ione,
                             one, XAR, &XARld );
               }
               else
               {
                  if( Anp0 > 0 )
                     zgemv_( TRANS, &Anp0, &Akq, negone,
                             Mptr( Aptr, Akp, 0,   Ald, size ), &Ald,
                             Mptr( XAC,  Akp, 0, XACld, size ), &ione,
                             one, XAR, &XARld );
               }
            }
         }
/*
*  Combine the scattered resulting vector XAR
*/
         if( XARsum && ( Anq > 0 ) )
         {
            Czgsum2d( ctxt, COLUMN, &ctop, 1, Anq, XAR, XARld, XARd[RSRC_],
                      mycol );
         }
/*
*  sub( X ) := XAR (if necessary)
*/
         if( XARapbX )
         {
            PB_Cpaxpby( type, NOCONJG, 1, *N, one, XAR, 0, 0, XARd, ROW, zero,
                        ((char *) X), Xi, Xj, Xd, &Xroc );
         }
/*
*  Restore BLACS topologies
*/
         (void) PB_Ctop( &ctxt, BCAST,   ROW,    &btop );
         (void) PB_Ctop( &ctxt, COMBINE, COLUMN, &ctop );
      }
   }
   if( XACfr ) free( XAC );
   if( XARfr ) free( XAR );
/*
*  End of PZTRSV
*/
}
 |