| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 
 |       PROGRAM PDBLA1TIM
*
*  -- PBLAS timing driver (version 2.0) --
*     University of Tennessee, Knoxville, Oak Ridge National Laboratory,
*     and University of California, Berkeley.
*     April 1, 1998
*
*  Purpose
*  =======
*
*  PDBLA1TIM  is the main timing program for the Level 1 PBLAS routines.
*
*  The program must be driven by a short data file.  An  annotated exam-
*  ple of a data file can be obtained by deleting the first 3 characters
*  from the following 40 lines:
*  'Level 1 PBLAS, Timing input file'
*  'Intel iPSC/860 hypercube, gamma model.'
*  'PDBLAS1TIM.SUMM'          output file name (if any)
*  6       device out
*  1       number of process grids (ordered pairs of P & Q)
*  2 2 1 4 2 3 8        values of P
*  2 2 4 1 3 2 1        values of Q
*  1.0D0                value of ALPHA
*  2                    number of tests problems
*  3  4                 values of N
*  6 10                 values of M_X
*  6 10                 values of N_X
*  2  5                 values of IMB_X
*  2  5                 values of INB_X
*  2  5                 values of MB_X
*  2  5                 values of NB_X
*  0  1                 values of RSRC_X
*  0  0                 values of CSRC_X
*  1  1                 values of IX
*  1  1                 values of JX
*  1  1                 values of INCX
*  6 10                 values of M_Y
*  6 10                 values of N_Y
*  2  5                 values of IMB_Y
*  2  5                 values of INB_Y
*  2  5                 values of MB_Y
*  2  5                 values of NB_Y
*  0  1                 values of RSRC_Y
*  0  0                 values of CSRC_Y
*  1  1                 values of IY
*  1  1                 values of JY
*  6  1                 values of INCY
*  PDSWAP  T            put F for no test in the same column
*  PDSCAL  T            put F for no test in the same column
*  PDCOPY  T            put F for no test in the same column
*  PDAXPY  T            put F for no test in the same column
*  PDDOT   T            put F for no test in the same column
*  PDNRM2  T            put F for no test in the same column
*  PDASUM  T            put F for no test in the same column
*  PDAMAX  T            put F for no test in the same column
*
*  Internal Parameters
*  ===================
*
*  TOTMEM  INTEGER
*          TOTMEM  is  a machine-specific parameter indicating the maxi-
*          mum  amount  of  available  memory per  process in bytes. The
*          user  should  customize TOTMEM to his  platform.  Remember to
*          leave  room  in  memory  for the  operating system, the BLACS
*          buffer, etc.  For  example,  on  a system with 8 MB of memory
*          per process (e.g., one processor  on an Intel iPSC/860),  the
*          parameters we use are TOTMEM=6200000  (leaving 1.8 MB for OS,
*          code, BLACS buffer, etc).  However,  for PVM,  we usually set
*          TOTMEM = 2000000.  Some experimenting  with the maximum value
*          of TOTMEM may be required. By default, TOTMEM is 2000000.
*
*  DBLESZ  INTEGER
*          DBLESZ  indicates  the  length in bytes on the given platform
*          for  a  double  precision  real. By default, DBLESZ is set to
*          eight.
*
*  MEM     DOUBLE PRECISION array
*          MEM is an array of dimension TOTMEM / DBLESZ.
*          All arrays used by SCALAPACK routines are allocated from this
*          array MEM and referenced by pointers. The  integer  IPA,  for
*          example, is a pointer to the starting element of MEM for  the
*          matrix A.
*
*  -- Written on April 1, 1998 by
*     Antoine Petitet, University  of  Tennessee, Knoxville 37996, USA.
*
*  =====================================================================
*
*     .. Parameters ..
      INTEGER            MAXTESTS, MAXGRIDS, DBLESZ, TOTMEM, MEMSIZ,
     $                   NSUBS
      PARAMETER          ( MAXTESTS = 20, MAXGRIDS = 20, DBLESZ = 8,
     $                   TOTMEM = 2000000, NSUBS = 8,
     $                   MEMSIZ = TOTMEM / DBLESZ )
      INTEGER            BLOCK_CYCLIC_2D_INB, CSRC_, CTXT_, DLEN_,
     $                   DTYPE_, IMB_, INB_, LLD_, MB_, M_, NB_, N_,
     $                   RSRC_
      PARAMETER          ( BLOCK_CYCLIC_2D_INB = 2, DLEN_ = 11,
     $                   DTYPE_ = 1, CTXT_ = 2, M_ = 3, N_ = 4,
     $                   IMB_ = 5, INB_ = 6, MB_ = 7, NB_ = 8,
     $                   RSRC_ = 9, CSRC_ = 10, LLD_ = 11 )
*     ..
*     .. Local Scalars ..
      INTEGER            CSRCX, CSRCY, I, IAM, ICTXT, IMBX, IMBY, IMIDX,
     $                   IMIDY, INBX, INBY, INCX, INCY, IPOSTX, IPOSTY,
     $                   IPREX, IPREY, IPX, IPY, IX, IXSEED, IY, IYSEED,
     $                   J, JX, JY, K, MBX, MBY, MEMREQD, MPX, MPY, MX,
     $                   MY, MYCOL, MYROW, N, NBX, NBY, NGRIDS, NOUT,
     $                   NPCOL, NPROCS, NPROW, NQX, NQY, NTESTS, NX, NY,
     $                   PISCLR, RSRCX, RSRCY
      DOUBLE PRECISION   ADDS, ALPHA, CFLOPS, MULTS, NOPS, PSCLR,
     $                   PUSCLR, WFLOPS
*     ..
*     .. Local Arrays ..
      CHARACTER*80       OUTFILE
      LOGICAL            LTEST( NSUBS ), YCHECK( NSUBS )
      INTEGER            CSCXVAL( MAXTESTS ), CSCYVAL( MAXTESTS ),
     $                   DESCX( DLEN_ ), DESCY( DLEN_ ), IERR( 2 ),
     $                   IMBXVAL( MAXTESTS ), IMBYVAL( MAXTESTS ),
     $                   INBXVAL( MAXTESTS ), INBYVAL( MAXTESTS ),
     $                   INCXVAL( MAXTESTS ), INCYVAL( MAXTESTS ),
     $                   IXVAL( MAXTESTS ), IYVAL( MAXTESTS ),
     $                   JXVAL( MAXTESTS ), JYVAL( MAXTESTS ),
     $                   MBXVAL( MAXTESTS ), MBYVAL( MAXTESTS ),
     $                   MXVAL( MAXTESTS ), MYVAL( MAXTESTS ),
     $                   NBXVAL( MAXTESTS ), NBYVAL( MAXTESTS ),
     $                   NVAL( MAXTESTS ), NXVAL( MAXTESTS ),
     $                   NYVAL( MAXTESTS ), PVAL( MAXTESTS ),
     $                   QVAL( MAXTESTS ), RSCXVAL( MAXTESTS ),
     $                   RSCYVAL( MAXTESTS )
      DOUBLE PRECISION   CTIME( 1 ), MEM( MEMSIZ ), WTIME( 1 )
*     ..
*     .. External Subroutines ..
      EXTERNAL           BLACS_BARRIER, BLACS_EXIT, BLACS_GET,
     $                   BLACS_GRIDEXIT, BLACS_GRIDINFO, BLACS_GRIDINIT,
     $                   BLACS_PINFO, IGSUM2D, PB_BOOT, PB_COMBINE,
     $                   PB_TIMER, PDAMAX, PDASUM, PDAXPY,
     $                   PDBLA1TIMINFO, PDCOPY, PDDOT, PDLAGEN, PDNRM2,
     $                   PDSCAL, PDSWAP, PVDESCCHK, PVDIMCHK
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          DBLE
*     ..
*     .. Common Blocks ..
      CHARACTER*7        SNAMES( NSUBS )
      LOGICAL            ABRTFLG
      INTEGER            INFO, NBLOG
      COMMON             /SNAMEC/SNAMES
      COMMON             /INFOC/INFO, NBLOG
      COMMON             /PBERRORC/NOUT, ABRTFLG
*     ..
*     .. Data Statements ..
      DATA               SNAMES/'PDSWAP ', 'PDSCAL ', 'PDCOPY ',
     $                   'PDAXPY ', 'PDDOT  ', 'PDNRM2 ',
     $                   'PDASUM ', 'PDAMAX '/
      DATA               YCHECK/.TRUE., .FALSE., .TRUE., .TRUE., .TRUE.,
     $                   .FALSE., .FALSE., .FALSE./
*     ..
*     .. Executable Statements ..
*
*     Initialization
*
*     Set flag so that the PBLAS error handler won't abort on errors, so
*     that the tester will detect unsupported operations.
*
      ABRTFLG = .FALSE.
*
*     Seeds for random matrix generations.
*
      IXSEED = 100
      IYSEED = 200
*
*     Get starting information
*
      CALL BLACS_PINFO( IAM, NPROCS )
      CALL PDBLA1TIMINFO( OUTFILE, NOUT, NTESTS, NVAL, MXVAL, NXVAL,
     $                    IMBXVAL, MBXVAL, INBXVAL, NBXVAL, RSCXVAL,
     $                    CSCXVAL, IXVAL, JXVAL, INCXVAL, MYVAL,
     $                    NYVAL, IMBYVAL, MBYVAL, INBYVAL, NBYVAL,
     $                    RSCYVAL, CSCYVAL, IYVAL, JYVAL, INCYVAL,
     $                    MAXTESTS, NGRIDS, PVAL, MAXGRIDS, QVAL,
     $                    MAXGRIDS, LTEST, IAM, NPROCS, ALPHA, MEM )
*
      IF( IAM.EQ.0 )
     $   WRITE( NOUT, FMT = 9986 )
*
*     Loop over different process grids
*
      DO 60 I = 1, NGRIDS
*
         NPROW = PVAL( I )
         NPCOL = QVAL( I )
*
*        Make sure grid information is correct
*
         IERR( 1 ) = 0
         IF( NPROW.LT.1 ) THEN
            IF( IAM.EQ.0 )
     $         WRITE( NOUT, FMT = 9999 ) 'GRID SIZE', 'NPROW', NPROW
            IERR( 1 ) = 1
         ELSE IF( NPCOL.LT.1 ) THEN
            IF( IAM.EQ.0 )
     $         WRITE( NOUT, FMT = 9999 ) 'GRID SIZE', 'NPCOL', NPCOL
            IERR( 1 ) = 1
         ELSE IF( NPROW*NPCOL.GT.NPROCS ) THEN
            IF( IAM.EQ.0 )
     $         WRITE( NOUT, FMT = 9998 ) NPROW*NPCOL, NPROCS
            IERR( 1 ) = 1
         END IF
*
         IF( IERR( 1 ).GT.0 ) THEN
            IF( IAM.EQ.0 )
     $         WRITE( NOUT, FMT = 9997 ) 'GRID'
            GO TO 60
         END IF
*
*        Define process grid
*
         CALL BLACS_GET( -1, 0, ICTXT )
         CALL BLACS_GRIDINIT( ICTXT, 'Row-major', NPROW, NPCOL )
         CALL BLACS_GRIDINFO( ICTXT, NPROW, NPCOL, MYROW, MYCOL )
*
*        Go to bottom of process grid loop if this case doesn't use my
*        process
*
         IF( MYROW.GE.NPROW .OR. MYCOL.GE.NPCOL )
     $      GO TO 60
*
*        Loop over number of tests
*
         DO 50 J = 1, NTESTS
*
*           Get the test parameters
*
            N     = NVAL( J )
            MX    = MXVAL( J )
            NX    = NXVAL( J )
            IMBX  = IMBXVAL( J )
            MBX   = MBXVAL( J )
            INBX  = INBXVAL( J )
            NBX   = NBXVAL( J )
            RSRCX = RSCXVAL( J )
            CSRCX = CSCXVAL( J )
            IX    = IXVAL( J )
            JX    = JXVAL( J )
            INCX  = INCXVAL( J )
            MY    = MYVAL( J )
            NY    = NYVAL( J )
            IMBY  = IMBYVAL( J )
            MBY   = MBYVAL( J )
            INBY  = INBYVAL( J )
            NBY   = NBYVAL( J )
            RSRCY = RSCYVAL( J )
            CSRCY = CSCYVAL( J )
            IY    = IYVAL( J )
            JY    = JYVAL( J )
            INCY  = INCYVAL( J )
*
            IF( IAM.EQ.0 ) THEN
               WRITE( NOUT, FMT = * )
               WRITE( NOUT, FMT = 9996 ) J, NPROW, NPCOL
               WRITE( NOUT, FMT = * )
*
               WRITE( NOUT, FMT = 9995 )
               WRITE( NOUT, FMT = 9994 )
               WRITE( NOUT, FMT = 9995 )
               WRITE( NOUT, FMT = 9993 ) N, IX, JX, MX, NX, IMBX, INBX,
     $                                   MBX, NBX, RSRCX, CSRCX, INCX
*
               WRITE( NOUT, FMT = 9995 )
               WRITE( NOUT, FMT = 9992 )
               WRITE( NOUT, FMT = 9995 )
               WRITE( NOUT, FMT = 9993 ) N, IY, JY, MY, NY, IMBY, INBY,
     $                                   MBY, NBY, RSRCY, CSRCY, INCY
               WRITE( NOUT, FMT = 9995 )
               WRITE( NOUT, FMT = 9983 )
            END IF
*
*           Check the validity of the input and initialize DESC_
*
            CALL PVDESCCHK( ICTXT, NOUT, 'X', DESCX,
     $                      BLOCK_CYCLIC_2D_INB, MX, NX, IMBX, INBX,
     $                      MBX, NBX, RSRCX, CSRCX, INCX, MPX, NQX,
     $                      IPREX, IMIDX, IPOSTX, 0, 0, IERR( 1 ) )
            CALL PVDESCCHK( ICTXT, NOUT, 'Y', DESCY,
     $                      BLOCK_CYCLIC_2D_INB, MY, NY, IMBY, INBY,
     $                      MBY, NBY, RSRCY, CSRCY, INCY, MPY, NQY,
     $                      IPREY, IMIDY, IPOSTY, 0, 0, IERR( 2 ) )
*
            IF( IERR( 1 ).GT.0 .OR. IERR( 2 ).GT.0 )
     $         GO TO 40
*
*           Assign pointers into MEM for matrices corresponding to
*           vectors X and Y. Ex: IPX starts at position MEM( 1 ).
*
            IPX = 1
            IPY = IPX + DESCX( LLD_ ) * NQX
*
*           Check if sufficient memory.
*
            MEMREQD = IPY + DESCY( LLD_ ) * NQY - 1
            IERR( 1 ) = 0
            IF( MEMREQD.GT.MEMSIZ ) THEN
               IF( IAM.EQ.0 )
     $            WRITE( NOUT, FMT = 9990 ) MEMREQD*DBLESZ
               IERR( 1 ) = 1
            END IF
*
*           Check all processes for an error
*
            CALL IGSUM2D( ICTXT, 'All', ' ', 1, 1, IERR, 1, -1, 0 )
*
            IF( IERR( 1 ).GT.0 ) THEN
               IF( IAM.EQ.0 )
     $            WRITE( NOUT, FMT = 9991 )
               GO TO 40
            END IF
*
*           Loop over all PBLAS 1 routines
*
            DO 30 K = 1, NSUBS
*
*              Continue only if this sub has to be tested.
*
               IF( .NOT.LTEST( K ) )
     $            GO TO 30
*
*              Check the validity of the operand sizes
*
               CALL PVDIMCHK( ICTXT, NOUT, N, 'X', IX, JX, DESCX, INCX,
     $                        IERR( 1 ) )
               CALL PVDIMCHK( ICTXT, NOUT, N, 'Y', IY, JY, DESCY, INCY,
     $                        IERR( 2 ) )
*
               IF( IERR( 1 ).NE.0 .OR. IERR( 2 ).NE.0 )
     $            GO TO 30
*
*              Generate distributed matrices X and Y
*
               CALL PDLAGEN( .FALSE., 'None', 'No diag', 0, MX, NX, 1,
     $                       1, DESCX, IXSEED, MEM( IPX ),
     $                       DESCX( LLD_ ) )
               IF( YCHECK( K ) )
     $            CALL PDLAGEN( .FALSE., 'None', 'No diag', 0, MY, NY,
     $                          1, 1, DESCY, IYSEED, MEM( IPY ),
     $                          DESCY( LLD_ ) )
*
               INFO = 0
               CALL PB_BOOT()
               CALL BLACS_BARRIER( ICTXT, 'All' )
*
*              Call the PBLAS routine
*
               IF( K.EQ.1 ) THEN
*
*                 Test PDSWAP
*
                  ADDS  = 0.0D+0
                  MULTS = 0.0D+0
                  CALL PB_TIMER( 1 )
                  CALL PDSWAP( N, MEM( IPX ), IX, JX, DESCX, INCX,
     $                         MEM( IPY ), IY, JY, DESCY, INCY )
                  CALL PB_TIMER( 1 )
*
               ELSE IF( K.EQ.2 ) THEN
*
*                 Test PDSCAL
*
                  ADDS  = 0.0D+0
                  MULTS = DBLE( N )
                  CALL PB_TIMER( 1 )
                  CALL PDSCAL( N, ALPHA, MEM( IPX ), IX, JX, DESCX,
     $                         INCX )
                  CALL PB_TIMER( 1 )
*
               ELSE IF( K.EQ.3 ) THEN
*
*                 Test PDCOPY
*
                  ADDS  = 0.0D+0
                  MULTS = 0.0D+0
                  CALL PB_TIMER( 1 )
                  CALL PDCOPY( N, MEM( IPX ), IX, JX, DESCX, INCX,
     $                         MEM( IPY ), IY, JY, DESCY, INCY )
                  CALL PB_TIMER( 1 )
*
               ELSE IF( K.EQ.4 ) THEN
*
*                 Test PDAXPY
*
                  ADDS  = DBLE( N )
                  MULTS = DBLE( N )
                  CALL PB_TIMER( 1 )
                  CALL PDAXPY( N, ALPHA, MEM( IPX ), IX, JX, DESCX,
     $                         INCX, MEM( IPY ), IY, JY, DESCY, INCY )
                  CALL PB_TIMER( 1 )
*
               ELSE IF( K.EQ.5 ) THEN
*
*                 Test PDDOT
*
                  ADDS = DBLE( N-1 )
                  MULTS = DBLE( N )
                  CALL PB_TIMER( 1 )
                  CALL PDDOT( N, PSCLR, MEM( IPX ), IX, JX, DESCX, INCX,
     $                        MEM( IPY ), IY, JY, DESCY, INCY )
                  CALL PB_TIMER( 1 )
*
               ELSE IF( K.EQ.6 ) THEN
*
*                 Test PDNRM2
*
                  ADDS  = DBLE( N-1 )
                  MULTS = DBLE( N )
                  CALL PB_TIMER( 1 )
                  CALL PDNRM2( N, PUSCLR, MEM( IPX ), IX, JX, DESCX,
     $                         INCX )
                  CALL PB_TIMER( 1 )
*
               ELSE IF( K.EQ.7 ) THEN
*
*                 Test PDASUM
*
                  ADDS  = DBLE( N - 1 )
                  MULTS = 0.0D+0
                  CALL PB_TIMER( 1 )
                  CALL PDASUM( N, PUSCLR, MEM( IPX ), IX, JX, DESCX,
     $                         INCX )
                  CALL PB_TIMER( 1 )
*
               ELSE IF( K.EQ.8 ) THEN
*
                  ADDS  = 0.0D+0
                  MULTS = 0.0D+0
                  CALL PB_TIMER( 1 )
                  CALL PDAMAX( N, PSCLR, PISCLR, MEM( IPX ), IX, JX,
     $                         DESCX, INCX )
                  CALL PB_TIMER( 1 )
*
               END IF
*
*              Check if the operation has been performed.
*
               IF( INFO.NE.0 ) THEN
                  IF( IAM.EQ.0 )
     $               WRITE( NOUT, FMT = 9985 ) INFO
                  GO TO 30
               END IF
*
               CALL PB_COMBINE( ICTXT, 'All', '>', 'W', 1, 1, WTIME )
               CALL PB_COMBINE( ICTXT, 'All', '>', 'C', 1, 1, CTIME )
*
*              Only node 0 prints timing test result
*
               IF( IAM.EQ.0 ) THEN
*
*                 Calculate total flops
*
                  NOPS = ADDS + MULTS
*
*                 Print WALL time if machine supports it
*
                  IF( WTIME( 1 ).GT.0.0D+0 ) THEN
                     WFLOPS = NOPS / ( WTIME( 1 ) * 1.0D+6 )
                  ELSE
                     WFLOPS = 0.0D+0
                  END IF
*
*                 Print CPU time if machine supports it
*
                  IF( CTIME( 1 ).GT.0.0D+0 ) THEN
                     CFLOPS = NOPS / ( CTIME( 1 ) * 1.0D+6 )
                  ELSE
                     CFLOPS = 0.0D+0
                  END IF
*
                  WRITE( NOUT, FMT = 9984 ) SNAMES( K ), WTIME( 1 ),
     $                                      WFLOPS, CTIME( 1 ), CFLOPS
*
               END IF
*
   30       CONTINUE
*
   40       IF( IAM.EQ.0 ) THEN
               WRITE( NOUT, FMT = 9995 )
               WRITE( NOUT, FMT = * )
               WRITE( NOUT, FMT = 9988 ) J
            END IF
*
   50   CONTINUE
*
        IF( IAM.EQ.0 ) THEN
           WRITE( NOUT, FMT = * )
           WRITE( NOUT, FMT = 9987 )
           WRITE( NOUT, FMT = * )
        END IF
*
        CALL BLACS_GRIDEXIT( ICTXT )
*
   60 CONTINUE
*
      CALL BLACS_EXIT( 0 )
*
 9999 FORMAT( 'ILLEGAL ', A, ': ', A, ' = ', I10,
     $        ' should be at least 1' )
 9998 FORMAT( 'ILLEGAL GRID: NPROW*NPCOL = ', I4,
     $        '. It can be at most', I4 )
 9997 FORMAT( 'Bad ', A, ' parameters: going on to next test case.' )
 9996 FORMAT( 2X, 'Test number ', I2 , ' started on a ', I4, ' x ',
     $        I4, ' process grid.' )
 9995 FORMAT( 2X, '---------------------------------------------------',
     $        '--------------------------' )
 9994 FORMAT( 2X, '     N     IX     JX     MX     NX  IMBX  INBX',
     $        '   MBX   NBX RSRCX CSRCX   INCX' )
 9993 FORMAT( 2X,I6,1X,I6,1X,I6,1X,I6,1X,I6,1X,I5,1X,I5,1X,I5,1X,I5,1X,
     $        I5,1X,I5,1X,I6 )
 9992 FORMAT( 2X, '     N     IY     JY     MY     NY  IMBY  INBY',
     $        '   MBY   NBY RSRCY CSRCY   INCY' )
 9991 FORMAT( 'Not enough memory for this test: going on to',
     $        ' next test case.' )
 9990 FORMAT( 'Not enough memory. Need: ', I12 )
 9988 FORMAT( 2X, 'Test number ', I2, ' completed.' )
 9987 FORMAT( 2X, 'End of Tests.' )
 9986 FORMAT( 2X, 'Tests started.' )
 9985 FORMAT( 2X, '   ***** Operation not supported, error code: ',
     $        I5, ' *****' )
 9984 FORMAT( 2X, '|  ', A, 2X, F13.3, 2X, F13.3, 2X, F13.3, 2X, F13.3 )
 9983 FORMAT( 2X, '            WALL time (s)    WALL Mflops ',
     $        '  CPU time (s)     CPU Mflops' )
*
      STOP
*
*     End of PDBLA1TIM
*
      END
      SUBROUTINE PDBLA1TIMINFO( SUMMRY, NOUT, NMAT, NVAL, MXVAL, NXVAL,
     $                          IMBXVAL, MBXVAL, INBXVAL, NBXVAL,
     $                          RSCXVAL, CSCXVAL, IXVAL, JXVAL,
     $                          INCXVAL, MYVAL, NYVAL, IMBYVAL, MBYVAL,
     $                          INBYVAL, NBYVAL, RSCYVAL, CSCYVAL,
     $                          IYVAL, JYVAL, INCYVAL, LDVAL, NGRIDS,
     $                          PVAL, LDPVAL, QVAL, LDQVAL, LTEST, IAM,
     $                          NPROCS, ALPHA, WORK )
*
*  -- PBLAS test routine (version 2.0) --
*     University of Tennessee, Knoxville, Oak Ridge National Laboratory,
*     and University of California, Berkeley.
*     April 1, 1998
*
*     .. Scalar Arguments ..
      INTEGER            IAM, LDPVAL, LDQVAL, LDVAL, NGRIDS, NMAT, NOUT,
     $                   NPROCS
      DOUBLE PRECISION   ALPHA
*     ..
*     .. Array Arguments ..
      CHARACTER*( * )    SUMMRY
      LOGICAL            LTEST( * )
      INTEGER            CSCXVAL( LDVAL ), CSCYVAL( LDVAL ),
     $                   IMBXVAL( LDVAL ), IMBYVAL( LDVAL ),
     $                   INBXVAL( LDVAL ), INBYVAL( LDVAL ),
     $                   INCXVAL( LDVAL ), INCYVAL( LDVAL ),
     $                   IXVAL( LDVAL ), IYVAL( LDVAL ), JXVAL( LDVAL ),
     $                   JYVAL( LDVAL ), MBXVAL( LDVAL ),
     $                   MBYVAL( LDVAL ), MXVAL( LDVAL ),
     $                   MYVAL( LDVAL ), NBXVAL( LDVAL ),
     $                   NBYVAL( LDVAL ), NVAL( LDVAL ), NXVAL( LDVAL ),
     $                   NYVAL( LDVAL ), PVAL( LDPVAL ), QVAL( LDQVAL ),
     $                   RSCXVAL( LDVAL ), RSCYVAL( LDVAL ), WORK( * )
*     ..
*
*  Purpose
*  =======
*
*  PDBLA1TIMINFO  get  the needed startup information for timing various
*  Level 1 PBLAS routines, and transmits it to all processes.
*
*  Notes
*  =====
*
*  For packing the information we assumed that the length in bytes of an
*  integer is equal to the length in bytes of a real single precision.
*
*  Arguments
*  =========
*
*  SUMMRY  (global output) CHARACTER*(*)
*          On  exit,  SUMMRY  is  the  name of output (summary) file (if
*          any). SUMMRY is only defined for process 0.
*
*  NOUT    (global output) INTEGER
*          On exit, NOUT  specifies the unit number for the output file.
*          When NOUT is 6, output to screen,  when  NOUT is 0, output to
*          stderr. NOUT is only defined for process 0.
*
*  NMAT    (global output) INTEGER
*          On exit,  NMAT  specifies the number of different test cases.
*
*  NVAL    (global output) INTEGER array
*          On entry, NVAL is an array of dimension LDVAL.  On exit, this
*          array contains the values of N to run the code with.
*
*  MXVAL   (global output) INTEGER array
*          On entry, MXVAL is an array of dimension LDVAL. On exit, this
*          array  contains  the values  of  DESCX( M_ )  to run the code
*          with.
*
*  NXVAL   (global output) INTEGER array
*          On entry, NXVAL is an array of dimension LDVAL. On exit, this
*          array  contains  the values  of  DESCX( N_ )  to run the code
*          with.
*
*  IMBXVAL (global output) INTEGER array
*          On entry,  IMBXVAL  is an array of  dimension LDVAL. On exit,
*          this  array  contains  the values of DESCX( IMB_ ) to run the
*          code with.
*
*  MBXVAL  (global output) INTEGER array
*          On entry,  MBXVAL  is an array of  dimension  LDVAL. On exit,
*          this  array  contains  the values of DESCX( MB_ ) to  run the
*          code with.
*
*  INBXVAL (global output) INTEGER array
*          On entry,  INBXVAL  is an array of  dimension LDVAL. On exit,
*          this  array  contains  the values of DESCX( INB_ ) to run the
*          code with.
*
*  NBXVAL  (global output) INTEGER array
*          On entry,  NBXVAL  is an array of  dimension  LDVAL. On exit,
*          this  array  contains  the values of DESCX( NB_ ) to  run the
*          code with.
*
*  RSCXVAL (global output) INTEGER array
*          On entry, RSCXVAL  is an array of  dimension  LDVAL. On exit,
*          this  array  contains the values of DESCX( RSRC_ ) to run the
*          code with.
*
*  CSCXVAL (global output) INTEGER array
*          On entry, CSCXVAL  is an array of  dimension  LDVAL. On exit,
*          this  array  contains the values of DESCX( CSRC_ ) to run the
*          code with.
*
*  IXVAL   (global output) INTEGER array
*          On entry, IXVAL is an array of dimension LDVAL. On exit, this
*          array  contains the values of IX to run the code with.
*
*  JXVAL   (global output) INTEGER array
*          On entry, JXVAL is an array of dimension LDVAL. On exit, this
*          array  contains the values of JX to run the code with.
*
*  INCXVAL (global output) INTEGER array
*          On entry,  INCXVAL  is  an array of dimension LDVAL. On exit,
*          this array  contains the values of INCX to run the code with.
*
*  MYVAL   (global output) INTEGER array
*          On entry, MYVAL is an array of dimension LDVAL. On exit, this
*          array  contains  the values  of  DESCY( M_ )  to run the code
*          with.
*
*  NYVAL   (global output) INTEGER array
*          On entry, NYVAL is an array of dimension LDVAL. On exit, this
*          array  contains  the values  of  DESCY( N_ )  to run the code
*          with.
*
*  IMBYVAL (global output) INTEGER array
*          On entry,  IMBYVAL  is an array of  dimension LDVAL. On exit,
*          this  array  contains  the values of DESCY( IMB_ ) to run the
*          code with.
*
*  MBYVAL  (global output) INTEGER array
*          On entry,  MBYVAL  is an array of  dimension  LDVAL. On exit,
*          this  array  contains  the values of DESCY( MB_ ) to  run the
*          code with.
*
*  INBYVAL (global output) INTEGER array
*          On entry,  INBYVAL  is an array of  dimension LDVAL. On exit,
*          this  array  contains  the values of DESCY( INB_ ) to run the
*          code with.
*
*  NBYVAL  (global output) INTEGER array
*          On entry,  NBYVAL  is an array of  dimension  LDVAL. On exit,
*          this  array  contains  the values of DESCY( NB_ ) to  run the
*          code with.
*
*  RSCYVAL (global output) INTEGER array
*          On entry, RSCYVAL  is an array of  dimension  LDVAL. On exit,
*          this  array  contains the values of DESCY( RSRC_ ) to run the
*          code with.
*
*  CSCYVAL (global output) INTEGER array
*          On entry, CSCYVAL  is an array of  dimension  LDVAL. On exit,
*          this  array  contains the values of DESCY( CSRC_ ) to run the
*          code with.
*
*  IYVAL   (global output) INTEGER array
*          On entry, IYVAL is an array of dimension LDVAL. On exit, this
*          array  contains the values of IY to run the code with.
*
*  JYVAL   (global output) INTEGER array
*          On entry, JYVAL is an array of dimension LDVAL. On exit, this
*          array  contains the values of JY to run the code with.
*
*  INCYVAL (global output) INTEGER array
*          On entry,  INCYVAL  is  an array of dimension LDVAL. On exit,
*          this array  contains the values of INCY to run the code with.
*
*  LDVAL   (global input) INTEGER
*          On entry, LDVAL specifies the maximum number of different va-
*          lues that can be used for  DESCX(:),  IX, JX, INCX, DESCY(:),
*          IY,  JY  and  INCY.  This  is also the maximum number of test
*          cases.
*
*  NGRIDS  (global output) INTEGER
*          On exit, NGRIDS specifies the number of different values that
*          can be used for P and Q.
*
*  PVAL    (global output) INTEGER array
*          On entry, PVAL is an array of dimension LDPVAL. On exit, this
*          array contains the values of P to run the code with.
*
*  LDPVAL  (global input) INTEGER
*          On entry,  LDPVAL  specifies  the maximum number of different
*          values that can be used for P.
*
*  QVAL    (global output) INTEGER array
*          On entry, QVAL is an array of dimension LDQVAL. On exit, this
*          array contains the values of Q to run the code with.
*
*  LDQVAL  (global input) INTEGER
*          On entry,  LDQVAL  specifies  the maximum number of different
*          values that can be used for Q.
*
*  LTEST   (global output) LOGICAL array
*          On entry,  LTEST  is an array of dimension at least eight. On
*          exit, if LTEST( i ) is .TRUE., the i-th Level 1 PBLAS routine
*          will be tested.  See  the  input file for the ordering of the
*          routines.
*
*  IAM     (local input) INTEGER
*          On entry,  IAM  specifies the number of the process executing
*          this routine.
*
*  NPROCS  (global input) INTEGER
*          On entry, NPROCS specifies the total number of processes.
*
*  ALPHA   (global output) DOUBLE PRECISION
*          On exit, ALPHA specifies the value of alpha to be used in all
*          the test cases.
*
*  WORK    (local workspace) INTEGER array
*          On   entry,   WORK   is   an  array  of  dimension  at  least
*          MAX( 2, 2*NGRIDS+23*NMAT+NSUBS ) with NSUBS = 8.  This  array
*          is  used  to  pack all output arrays in order to send info in
*          one message.
*
*  -- Written on April 1, 1998 by
*     Antoine Petitet, University  of  Tennessee, Knoxville 37996, USA.
*
*  =====================================================================
*
*     .. Parameters ..
      INTEGER            NIN, NSUBS
      PARAMETER          ( NIN = 11, NSUBS = 8 )
*     ..
*     .. Local Scalars ..
      LOGICAL            LTESTT
      INTEGER            I, ICTXT, J
*     ..
*     .. Local Arrays ..
      CHARACTER*7        SNAMET
      CHARACTER*79       USRINFO
*     ..
*     .. External Subroutines ..
      EXTERNAL           BLACS_ABORT, BLACS_GET, BLACS_GRIDEXIT,
     $                   BLACS_GRIDINIT, BLACS_SETUP, DGEBR2D, DGEBS2D,
     $                   ICOPY, IGEBR2D, IGEBS2D, SGEBR2D, SGEBS2D
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAX, MIN
*     ..
*     .. Common Blocks ..
      CHARACTER*7        SNAMES( NSUBS )
      COMMON             /SNAMEC/SNAMES
*     ..
*     .. Executable Statements ..
*
*
*     Process 0 reads the input data, broadcasts to other processes and
*     writes needed information to NOUT
*
      IF( IAM.EQ.0 ) THEN
*
*        Open file and skip data file header
*
         OPEN( NIN, FILE='PDBLAS1TIM.dat', STATUS='OLD' )
         READ( NIN, FMT = * ) SUMMRY
         SUMMRY = ' '
*
*        Read in user-supplied info about machine type, compiler, etc.
*
         READ( NIN, FMT = 9999 ) USRINFO
*
*        Read name and unit number for summary output file
*
         READ( NIN, FMT = * ) SUMMRY
         READ( NIN, FMT = * ) NOUT
         IF( NOUT.NE.0 .AND. NOUT.NE.6 )
     $      OPEN( NOUT, FILE = SUMMRY, STATUS = 'UNKNOWN' )
*
*        Read and check the parameter values for the tests.
*
*        Get number of grids
*
         READ( NIN, FMT = * ) NGRIDS
         IF( NGRIDS.LT.1 .OR. NGRIDS.GT.LDPVAL ) THEN
            WRITE( NOUT, FMT = 9998 ) 'Grids', LDPVAL
            GO TO 100
         ELSE IF( NGRIDS.GT.LDQVAL ) THEN
            WRITE( NOUT, FMT = 9998 ) 'Grids', LDQVAL
            GO TO 100
         END IF
*
*        Get values of P and Q
*
         READ( NIN, FMT = * ) ( PVAL( I ), I = 1, NGRIDS )
         READ( NIN, FMT = * ) ( QVAL( I ), I = 1, NGRIDS )
*
*        Read ALPHA
*
         READ( NIN, FMT = * ) ALPHA
*
*        Read number of tests.
*
         READ( NIN, FMT = * ) NMAT
         IF( NMAT.LT.1 .OR. NMAT.GT.LDVAL ) THEN
            WRITE( NOUT, FMT = 9998 ) 'Tests', LDVAL
            GO TO 100
         END IF
*
*        Read in input data into arrays.
*
         READ( NIN, FMT = * ) ( NVAL   ( I ), I = 1, NMAT )
         READ( NIN, FMT = * ) ( MXVAL  ( I ), I = 1, NMAT )
         READ( NIN, FMT = * ) ( NXVAL  ( I ), I = 1, NMAT )
         READ( NIN, FMT = * ) ( IMBXVAL( I ), I = 1, NMAT )
         READ( NIN, FMT = * ) ( INBXVAL( I ), I = 1, NMAT )
         READ( NIN, FMT = * ) ( MBXVAL ( I ), I = 1, NMAT )
         READ( NIN, FMT = * ) ( NBXVAL ( I ), I = 1, NMAT )
         READ( NIN, FMT = * ) ( RSCXVAL( I ), I = 1, NMAT )
         READ( NIN, FMT = * ) ( CSCXVAL( I ), I = 1, NMAT )
         READ( NIN, FMT = * ) ( IXVAL  ( I ), I = 1, NMAT )
         READ( NIN, FMT = * ) ( JXVAL  ( I ), I = 1, NMAT )
         READ( NIN, FMT = * ) ( INCXVAL( I ), I = 1, NMAT )
         READ( NIN, FMT = * ) ( MYVAL  ( I ), I = 1, NMAT )
         READ( NIN, FMT = * ) ( NYVAL  ( I ), I = 1, NMAT )
         READ( NIN, FMT = * ) ( IMBYVAL( I ), I = 1, NMAT )
         READ( NIN, FMT = * ) ( INBYVAL( I ), I = 1, NMAT )
         READ( NIN, FMT = * ) ( MBYVAL ( I ), I = 1, NMAT )
         READ( NIN, FMT = * ) ( NBYVAL ( I ), I = 1, NMAT )
         READ( NIN, FMT = * ) ( RSCYVAL( I ), I = 1, NMAT )
         READ( NIN, FMT = * ) ( CSCYVAL( I ), I = 1, NMAT )
         READ( NIN, FMT = * ) ( IYVAL  ( I ), I = 1, NMAT )
         READ( NIN, FMT = * ) ( JYVAL  ( I ), I = 1, NMAT )
         READ( NIN, FMT = * ) ( INCYVAL( I ), I = 1, NMAT )
*
*        Read names of subroutines and flags which indicate
*        whether they are to be tested.
*
         DO 10 I = 1, NSUBS
            LTEST( I ) = .FALSE.
   10    CONTINUE
   20    CONTINUE
         READ( NIN, FMT = 9996, END = 50 ) SNAMET, LTESTT
         DO 30 I = 1, NSUBS
            IF( SNAMET.EQ.SNAMES( I ) )
     $         GO TO 40
   30    CONTINUE
*
         WRITE( NOUT, FMT = 9995 )SNAMET
         GO TO 100
*
   40    CONTINUE
         LTEST( I ) = LTESTT
         GO TO 20
*
   50    CONTINUE
*
*        Close input file
*
         CLOSE ( NIN )
*
*        For pvm only: if virtual machine not set up, allocate it and
*        spawn the correct number of processes.
*
         IF( NPROCS.LT.1 ) THEN
            NPROCS = 0
            DO 60 I = 1, NGRIDS
               NPROCS = MAX( NPROCS, PVAL( I )*QVAL( I ) )
   60       CONTINUE
            CALL BLACS_SETUP( IAM, NPROCS )
         END IF
*
*        Temporarily define blacs grid to include all processes so
*        information can be broadcast to all processes
*
         CALL BLACS_GET( -1, 0, ICTXT )
         CALL BLACS_GRIDINIT( ICTXT, 'Row-major', 1, NPROCS )
*
*        Pack information arrays and broadcast
*
         CALL DGEBS2D( ICTXT, 'All', ' ', 1, 1, ALPHA, 1 )
*
         WORK( 1 ) = NGRIDS
         WORK( 2 ) = NMAT
         CALL IGEBS2D( ICTXT, 'All', ' ', 2, 1, WORK, 2 )
*
         I = 1
         CALL ICOPY( NGRIDS, PVAL,     1, WORK( I ), 1 )
         I = I + NGRIDS
         CALL ICOPY( NGRIDS, QVAL,     1, WORK( I ), 1 )
         I = I + NGRIDS
         CALL ICOPY( NMAT,   NVAL,     1, WORK( I ), 1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   MXVAL,    1, WORK( I ), 1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   NXVAL,    1, WORK( I ), 1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   IMBXVAL,  1, WORK( I ), 1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   INBXVAL,  1, WORK( I ), 1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   MBXVAL,   1, WORK( I ), 1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   NBXVAL,   1, WORK( I ), 1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   RSCXVAL,  1, WORK( I ), 1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   CSCXVAL,  1, WORK( I ), 1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   IXVAL,    1, WORK( I ), 1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   JXVAL,    1, WORK( I ), 1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   INCXVAL,  1, WORK( I ), 1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   MYVAL,    1, WORK( I ), 1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   NYVAL,    1, WORK( I ), 1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   IMBYVAL,  1, WORK( I ), 1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   INBYVAL,  1, WORK( I ), 1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   MBYVAL,   1, WORK( I ), 1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   NBYVAL,   1, WORK( I ), 1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   RSCYVAL,  1, WORK( I ), 1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   CSCYVAL,  1, WORK( I ), 1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   IYVAL,    1, WORK( I ), 1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   JYVAL,    1, WORK( I ), 1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   INCYVAL,  1, WORK( I ), 1 )
         I = I + NMAT
*
         DO 70 J = 1, NSUBS
            IF( LTEST( J ) ) THEN
               WORK( I ) = 1
            ELSE
               WORK( I ) = 0
            END IF
            I = I + 1
   70    CONTINUE
         I = I - 1
         CALL IGEBS2D( ICTXT, 'All', ' ', I, 1, WORK, I )
*
*        regurgitate input
*
         WRITE( NOUT, FMT = 9999 )
     $               'Level 1 PBLAS timing program.'
         WRITE( NOUT, FMT = 9999 ) USRINFO
         WRITE( NOUT, FMT = * )
         WRITE( NOUT, FMT = 9999 )
     $               'Timing of the real double precision '//
     $               'Level 1 PBLAS'
         WRITE( NOUT, FMT = * )
         WRITE( NOUT, FMT = 9999 )
     $               'The following parameter values will be used:'
         WRITE( NOUT, FMT = * )
         WRITE( NOUT, FMT = 9993 ) NMAT
         WRITE( NOUT, FMT = 9992 ) NGRIDS
         WRITE( NOUT, FMT = 9990 )
     $               'P', ( PVAL(I), I = 1, MIN(NGRIDS, 5) )
         IF( NGRIDS.GT.5 )
     $      WRITE( NOUT, FMT = 9991 ) ( PVAL(I), I = 6,
     $                                  MIN( 10, NGRIDS ) )
         IF( NGRIDS.GT.10 )
     $      WRITE( NOUT, FMT = 9991 ) ( PVAL(I), I = 11,
     $                                  MIN( 15, NGRIDS ) )
         IF( NGRIDS.GT.15 )
     $      WRITE( NOUT, FMT = 9991 ) ( PVAL(I), I = 16, NGRIDS )
         WRITE( NOUT, FMT = 9990 )
     $               'Q', ( QVAL(I), I = 1, MIN(NGRIDS, 5) )
         IF( NGRIDS.GT.5 )
     $      WRITE( NOUT, FMT = 9991 ) ( QVAL(I), I = 6,
     $                                  MIN( 10, NGRIDS ) )
         IF( NGRIDS.GT.10 )
     $      WRITE( NOUT, FMT = 9991 ) ( QVAL(I), I = 11,
     $                                  MIN( 15, NGRIDS ) )
         IF( NGRIDS.GT.15 )
     $      WRITE( NOUT, FMT = 9991 ) ( QVAL(I), I = 16, NGRIDS )
         WRITE( NOUT, FMT = 9994 ) ALPHA
         IF( LTEST( 1 ) ) THEN
            WRITE( NOUT, FMT = 9989 ) SNAMES( 1 ), ' ... Yes'
         ELSE
            WRITE( NOUT, FMT = 9989 ) SNAMES( 1 ), ' ... No '
         END IF
         DO 80 I = 2, NSUBS
            IF( LTEST( I ) ) THEN
               WRITE( NOUT, FMT = 9988 ) SNAMES( I ), ' ... Yes'
            ELSE
               WRITE( NOUT, FMT = 9988 ) SNAMES( I ), ' ... No '
            END IF
   80    CONTINUE
         WRITE( NOUT, FMT = * )
*
      ELSE
*
*        If in pvm, must participate setting up virtual machine
*
         IF( NPROCS.LT.1 )
     $      CALL BLACS_SETUP( IAM, NPROCS )
*
*        Temporarily define blacs grid to include all processes so
*        information can be broadcast to all processes
*
         CALL BLACS_GET( -1, 0, ICTXT )
         CALL BLACS_GRIDINIT( ICTXT, 'Row-major', 1, NPROCS )
*
         CALL DGEBR2D( ICTXT, 'All', ' ', 1, 1, ALPHA, 1, 0, 0 )
*
         CALL IGEBR2D( ICTXT, 'All', ' ', 2, 1, WORK, 2, 0, 0 )
         NGRIDS = WORK( 1 )
         NMAT   = WORK( 2 )
*
         I = 2*NGRIDS + 23*NMAT + NSUBS
         CALL IGEBR2D( ICTXT, 'All', ' ', I, 1, WORK, I, 0, 0 )
*
         I = 1
         CALL ICOPY( NGRIDS, WORK( I ), 1, PVAL,     1 )
         I = I + NGRIDS
         CALL ICOPY( NGRIDS, WORK( I ), 1, QVAL,     1 )
         I = I + NGRIDS
         CALL ICOPY( NMAT,   WORK( I ), 1, NVAL,     1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   WORK( I ), 1, MXVAL,    1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   WORK( I ), 1, NXVAL,    1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   WORK( I ), 1, IMBXVAL,  1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   WORK( I ), 1, INBXVAL,  1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   WORK( I ), 1, MBXVAL,   1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   WORK( I ), 1, NBXVAL,   1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   WORK( I ), 1, RSCXVAL,  1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   WORK( I ), 1, CSCXVAL,  1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   WORK( I ), 1, IXVAL,    1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   WORK( I ), 1, JXVAL,    1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   WORK( I ), 1, INCXVAL,  1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   WORK( I ), 1, MYVAL,    1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   WORK( I ), 1, NYVAL,    1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   WORK( I ), 1, IMBYVAL,  1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   WORK( I ), 1, INBYVAL,  1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   WORK( I ), 1, MBYVAL,   1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   WORK( I ), 1, NBYVAL,   1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   WORK( I ), 1, RSCYVAL,  1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   WORK( I ), 1, CSCYVAL,  1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   WORK( I ), 1, IYVAL,    1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   WORK( I ), 1, JYVAL,    1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   WORK( I ), 1, INCYVAL,  1 )
         I = I + NMAT
*
         DO 90 J = 1, NSUBS
            IF( WORK( I ).EQ.1 ) THEN
               LTEST( J ) = .TRUE.
            ELSE
               LTEST( J ) = .FALSE.
            END IF
            I = I + 1
   90    CONTINUE
*
      END IF
*
      CALL BLACS_GRIDEXIT( ICTXT )
*
      RETURN
*
  100 WRITE( NOUT, FMT = 9997 )
      CLOSE( NIN )
      IF( NOUT.NE.6 .AND. NOUT.NE.0 )
     $   CLOSE( NOUT )
      CALL BLACS_ABORT( ICTXT, 1 )
*
      STOP
*
 9999 FORMAT( A )
 9998 FORMAT( ' Number of values of ',5A, ' is less than 1 or greater ',
     $        'than ', I2 )
 9997 FORMAT( ' Illegal input in file ',40A,'.  Aborting run.' )
 9996 FORMAT( A7, L2 )
 9995 FORMAT( '  Subprogram name ', A7, ' not recognized',
     $        /' ******* TESTS ABANDONED *******' )
 9994 FORMAT( 2X, 'Alpha                     : ', G16.6 )
 9993 FORMAT( 2X, 'Number of Tests           : ', I6 )
 9992 FORMAT( 2X, 'Number of process grids   : ', I6 )
 9991 FORMAT( 2X, '                          : ', 5I6 )
 9990 FORMAT( 2X, A1, '                         : ', 5I6 )
 9989 FORMAT( 2X, 'Routines to be tested     :      ', A, A8 )
 9988 FORMAT( 2X, '                                 ', A, A8 )
*
*     End of PDBLA1TIMINFO
*
      END
 |