1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
  
     | 
    
            SUBROUTINE PZLATRAN( N, NB, A, IA, JA, DESCA, WORK )
*
*  -- ScaLAPACK auxiliary routine (version 1.7) --
*     University of Tennessee, Knoxville, Oak Ridge National Laboratory,
*     and University of California, Berkeley.
*     October 15, 1999
*
*     .. Scalar Arguments ..
      INTEGER            IA, JA, N, NB
*     ..
*     .. Array Arguments ..
      INTEGER            DESCA( * )
      COMPLEX*16         A( * ), WORK( * )
*     ..
*
*  Purpose
*
*  =======
*
*  PZLATRAN transpose a lower triangular matrix on to the upper
*  triangular portion of the same matrix.
*
*  This is an auxiliary routine called by PZHETRD.
*
*  Notes
*  =====
*
*  IA must equal 1
*  JA must equal 1
*  DESCA( MB_ ) must equal 1
*  DESCA( NB_ ) must equal 1
*  DESCA( RSRC_ ) must equal 1
*  DESCA( CSRC_ ) must equal 1
*
*
*  Arguments
*  =========
*
*  N       (global input) INTEGER
*          The size of the matrix to be transposed.
*
*  NB      (global input) INTEGER
*          The number of rows and columns to be transposed with each
*          message sent.  NB has no impact on the result, it is striclty
*          a performance tuning parameter.
*
*  A       (local input/local output) COMPLEX*16 pointer into the
*          local memory to an array of dimension (LLD_A,LOCc(JA+N-1)).
*          On entry, this array contains the local pieces of the
*          Hermitian distributed matrix sub( A ).  On entry, the
*          leading N-by-N upper triangular part of sub( A ) contains
*          the upper triangular part of the matrix. On exit, the
*          leading N-by-N lower triangular part of sub( A ) contains the
*          lower triangular part of the matrix, and its strictly upper
*          triangular part is undefined (and may have been modified).
*
*  IA      (global input) INTEGER
*          A's global row index, which points to the beginning of the
*          submatrix which is to be operated on.
*          Must be equal to 1.
*
*  JA      (global input) INTEGER
*          A's global column index, which points to the beginning of
*          the submatrix which is to be operated on.
*          Must be equal to 1.
*
*  DESCA   (global and local input) INTEGER array of dimension DLEN_.
*          The array descriptor for the distributed matrix A.
*          DESCA( MB_ ) must equal 1
*          DESCA( NB_ ) must equal 1
*          DESCA( ICTXT_ ) must point to a square process grid
*            i.e. one where NPROW is equal to NPCOL
*
*  WORK    (local workspace) COMPLEX*16 array, dimension ( LWORK )
*
*          Where:
*          LWORK >= NB * NUMROC( N, 1, 0, 0, NPROW )
*
*  =====================================================================
*
*     .. Parameters ..
      INTEGER            BLOCK_CYCLIC_2D, DLEN_, DTYPE_, CTXT_, M_, N_,
     $                   MB_, NB_, RSRC_, CSRC_, LLD_
      PARAMETER          ( BLOCK_CYCLIC_2D = 1, DLEN_ = 9, DTYPE_ = 1,
     $                   CTXT_ = 2, M_ = 3, N_ = 4, MB_ = 5, NB_ = 6,
     $                   RSRC_ = 7, CSRC_ = 8, LLD_ = 9 )
*     ..
*     .. Local Scalars ..
      INTEGER            I, ICTXT, IRECV, ISEND, J, JJ, JRECV, JSEND,
     $                   LDA, MAXIRECV, MAXISEND, MAXJRECV, MAXJSEND,
     $                   MINIRECV, MINISEND, MINJRECV, MINJSEND, MYCOL,
     $                   MYROW, NP, NPCOL, NPROW, NQ, RECVNB, SENDNB,
     $                   STARTCOL, STARTROW
*     ..
*     .. External Subroutines ..
      EXTERNAL           BLACS_GRIDINFO, ZTRRV2D, ZTRSD2D
*     ..
*     .. External Functions ..
      INTEGER            NUMROC
      EXTERNAL           NUMROC
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          DCONJG, MAX, MIN
*     ..
*     .. Executable Statements ..
*       This is just to keep ftnchek and toolpack/1 happy
      IF( BLOCK_CYCLIC_2D*CSRC_*CTXT_*DLEN_*DTYPE_*LLD_*MB_*M_*NB_*N_*
     $    RSRC_.LT.0 )RETURN
*
*     Further details
*
*     Because the processor grid is square each process needs only send
*     data to its transpose process.  (Likewsie it need only receive
*     data from its transpose process.)  Because the data decomposition
*     is cyclic, the local portion of the array is triangular.
*
*     This routine requires that the data be buffered (i.e. copied)
*     on the sending process (because of the triangular shape) and
*     unbuffered on the receiving process.  Hence, two local memory to
*     memory copies are performed within the communications routines
*     followed by a memory to memory copy outside of the communications
*     routines.  It would be nice to avoid having back to back memory
*     to memory copies (as we do presently on the receiving processor).
*     This could be done by packaging the data ourselves in the sender
*     and then unpacking it directly into the matrix.  However, this
*     code seems cleaner and so since this routine is not a significant
*     performance bottleneck we have left it this way.
*
*
*
*
*     Quick return if possible
*
      IF( N.LE.0 )
     $   RETURN
*
      ICTXT = DESCA( CTXT_ )
      LDA = DESCA( LLD_ )
      CALL BLACS_GRIDINFO( ICTXT, NPROW, NPCOL, MYROW, MYCOL )
*
*
      NP = NUMROC( N, 1, MYROW, 0, NPROW )
      NQ = NUMROC( N, 1, MYCOL, 0, NPCOL )
*
*
      IF( MYROW.EQ.MYCOL ) THEN
*
         DO 20 J = 1, NP
            DO 10 I = J + 1, NQ
               A( J+( I-1 )*LDA ) = DCONJG( A( I+( J-1 )*LDA ) )
   10       CONTINUE
   20    CONTINUE
*
      ELSE
         IF( MYROW.GT.MYCOL ) THEN
            STARTROW = 1
            STARTCOL = 2
         ELSE
            IF( MYROW.EQ.MYCOL ) THEN
               STARTROW = 2
               STARTCOL = 2
            ELSE
               STARTROW = 2
               STARTCOL = 1
            END IF
         END IF
*
         DO 50 JJ = 1, MAX( NP, NQ ), NB
            MINJSEND = STARTCOL + JJ - 1
            MINJRECV = STARTROW + JJ - 1
            MAXJSEND = MIN( MINJSEND+NB-1, NQ )
            MAXJRECV = MIN( MINJRECV+NB-1, NP )
*
            SENDNB = MAXJSEND - MINJSEND + 1
            RECVNB = MAXJRECV - MINJRECV + 1
*
            MINISEND = 1
            MINIRECV = 1
            MAXISEND = MIN( NP, JJ+SENDNB-1 )
            MAXIRECV = MIN( NQ, JJ+RECVNB-1 )
*
            ISEND = MAXISEND - MINISEND + 1
            IRECV = MAXIRECV - MINIRECV + 1
            JSEND = MAXJSEND - MINJSEND + 1
            JRECV = MAXJRECV - MINJRECV + 1
*
*
*
            DO 40 J = MINJRECV, MAXJRECV
               DO 30 I = MINIRECV, MAXIRECV + J - MAXJRECV
                  WORK( I+( J-MINJRECV )*IRECV )
     $               = DCONJG( A( J+( I-1 )*LDA ) )
   30          CONTINUE
   40       CONTINUE
*
            IF( IRECV.GT.0 .AND. JRECV.GT.0 )
     $         CALL ZTRSD2D( ICTXT, 'U', 'N', IRECV, JRECV, WORK, IRECV,
     $                       MYCOL, MYROW )
*
            IF( ISEND.GT.0 .AND. JSEND.GT.0 )
     $         CALL ZTRRV2D( ICTXT, 'U', 'N', ISEND, JSEND,
     $                       A( MINISEND+( MINJSEND-1 )*LDA ), LDA,
     $                       MYCOL, MYROW )
*
*
   50    CONTINUE
*
      END IF
*
      RETURN
*
*     End of PZLATRD
*
      END
 
     |