File: pzlaschk.f

package info (click to toggle)
scalapack 1.7-7
  • links: PTS
  • area: main
  • in suites: sarge
  • size: 33,960 kB
  • ctags: 30,434
  • sloc: fortran: 309,685; ansic: 64,027; makefile: 1,836; sh: 4
file content (331 lines) | stat: -rw-r--r-- 12,580 bytes parent folder | download | duplicates (12)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
      SUBROUTINE PZLASCHK( SYMM, DIAG, N, NRHS, X, IX, JX, DESCX,
     $                     IASEED, IA, JA, DESCA, IBSEED, ANORM, RESID,
     $                     WORK )
*
*  -- ScaLAPACK auxiliary routine (version 1.7) --
*     University of Tennessee, Knoxville, Oak Ridge National Laboratory,
*     and University of California, Berkeley.
*     May 1, 1997
*
*     .. Scalar Arguments ..
      CHARACTER          DIAG, SYMM
      INTEGER            IA, IASEED, IBSEED, IX, JA, JX, N, NRHS
      DOUBLE PRECISION   ANORM, RESID
*     ..
*     .. Array Arguments ..
      INTEGER            DESCA( * ), DESCX( * )
      COMPLEX*16         WORK( * ), X( * )
*     ..
*
*  Purpose
*  =======
*
*  PZLASCHK computes the residual
*  || sub( A )*sub( X ) - B || / (|| sub( A ) ||*|| sub( X ) ||*eps*N)
*  to check the accuracy of the factorization and solve steps in the
*  LU and Cholesky decompositions, where sub( A ) denotes
*  A(IA:IA+N-1,JA,JA+N-1), sub( X ) denotes X(IX:IX+N-1, JX:JX+NRHS-1).
*
*  Notes
*  =====
*
*  Each global data object is described by an associated description
*  vector.  This vector stores the information required to establish
*  the mapping between an object element and its corresponding process
*  and memory location.
*
*  Let A be a generic term for any 2D block cyclicly distributed array.
*  Such a global array has an associated description vector DESCA.
*  In the following comments, the character _ should be read as
*  "of the global array".
*
*  NOTATION        STORED IN      EXPLANATION
*  --------------- -------------- --------------------------------------
*  DTYPE_A(global) DESCA( DTYPE_ )The descriptor type.  In this case,
*                                 DTYPE_A = 1.
*  CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
*                                 the BLACS process grid A is distribu-
*                                 ted over. The context itself is glo-
*                                 bal, but the handle (the integer
*                                 value) may vary.
*  M_A    (global) DESCA( M_ )    The number of rows in the global
*                                 array A.
*  N_A    (global) DESCA( N_ )    The number of columns in the global
*                                 array A.
*  MB_A   (global) DESCA( MB_ )   The blocking factor used to distribute
*                                 the rows of the array.
*  NB_A   (global) DESCA( NB_ )   The blocking factor used to distribute
*                                 the columns of the array.
*  RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
*                                 row of the array A is distributed.
*  CSRC_A (global) DESCA( CSRC_ ) The process column over which the
*                                 first column of the array A is
*                                 distributed.
*  LLD_A  (local)  DESCA( LLD_ )  The leading dimension of the local
*                                 array.  LLD_A >= MAX(1,LOCr(M_A)).
*
*  Let K be the number of rows or columns of a distributed matrix,
*  and assume that its process grid has dimension p x q.
*  LOCr( K ) denotes the number of elements of K that a process
*  would receive if K were distributed over the p processes of its
*  process column.
*  Similarly, LOCc( K ) denotes the number of elements of K that a
*  process would receive if K were distributed over the q processes of
*  its process row.
*  The values of LOCr() and LOCc() may be determined via a call to the
*  ScaLAPACK tool function, NUMROC:
*          LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
*          LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).
*  An upper bound for these quantities may be computed by:
*          LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
*          LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A
*
*  Arguments
*  =========
*
*  SYMM      (global input) CHARACTER
*          if SYMM = 'H', sub( A ) is a hermitian distributed matrix,
*          otherwise sub( A ) is a general distributed matrix.
*
*  DIAG    (global input) CHARACTER
*          If DIAG = 'D', sub( A ) is diagonally dominant.
*
*  N       (global input) INTEGER
*          The number of columns to be operated on, i.e. the number of
*          columns of the distributed submatrix sub( A ). N >= 0.
*
*  NRHS    (global input) INTEGER
*          The number of right-hand-sides, i.e the number of columns
*          of the distributed matrix sub( X ). NRHS >= 0.
*
*  X       (local input) COMPLEX*16 pointer into the local memory
*          to an array of dimension (LLD_X,LOCc(JX+NRHS-1). This array
*          contains the local pieces of the answer vector(s) sub( X ) of
*          sub( A ) sub( X ) - B, split up over a column of processes.
*
*  IX      (global input) INTEGER
*          The row index in the global array X indicating the first
*          row of sub( X ).
*
*  JX      (global input) INTEGER
*          The column index in the global array X indicating the
*          first column of sub( X ).
*
*  DESCX   (global and local input) INTEGER array of dimension DLEN_.
*          The array descriptor for the distributed matrix X.
*
*  IASEED  (global input) INTEGER
*          The seed number to generate the original matrix Ao.
*
*  IA      (global input) INTEGER
*          The row index in the global array A indicating the first
*          row of sub( A ).
*
*  JA      (global input) INTEGER
*          The column index in the global array A indicating the
*          first column of sub( A ).
*
*  DESCA   (global and local input) INTEGER array of dimension DLEN_.
*          The array descriptor for the distributed matrix A.
*
*  IBSEED  (global input) INTEGER
*          The seed number to generate the original matrix B.
*
*  ANORM   (global input) DOUBLE PRECISION
*          The 1-norm or infinity norm of the distributed matrix
*          sub( A ).
*
*  RESID   (global output) DOUBLE PRECISION
*          The residual error:
*          ||sub( A )*sub( X )-B|| / (||sub( A )||*||sub( X )||*eps*N).
*
*  WORK    (local workspace) COMPLEX*16 array, dimension (LWORK)
*          LWORK >= MAX(1,Np)*NB_X + Nq*NB_X + MAX( MAX(NQ*MB_A,2*NB_X),
*          NB_X * NUMROC( NUMROC(N,MB_X,0,0,NPCOL), MB_X, 0, 0, LCMQ ) )
*
*  =====================================================================
*
*     .. Parameters ..
      INTEGER            BLOCK_CYCLIC_2D, CSRC_, CTXT_, DLEN_, DTYPE_,
     $                   LLD_, MB_, M_, NB_, N_, RSRC_
      PARAMETER          ( BLOCK_CYCLIC_2D = 1, DLEN_ = 9, DTYPE_ = 1,
     $                     CTXT_ = 2, M_ = 3, N_ = 4, MB_ = 5, NB_ = 6,
     $                     RSRC_ = 7, CSRC_ = 8, LLD_ = 9 )
      COMPLEX*16         ZERO, ONE
      PARAMETER          ( ONE = ( 1.0D+0, 0.0D+0 ),
     $                     ZERO = ( 0.0D+0, 0.0D+0 ) )
*     ..
*     .. Local Scalars ..
      INTEGER            IACOL, IAROW, IB, ICOFF, ICTXT, ICURCOL, IDUMM,
     $                   II, IIA, IIX, IOFFX, IPA, IPB, IPW, IPX, IROFF,
     $                   IXCOL, IXROW, J, JBRHS, JJ, JJA, JJX, LDX,
     $                   MYCOL, MYROW, NP, NPCOL, NPROW, NQ
      DOUBLE PRECISION   DIVISOR, EPS, RESID1
      COMPLEX*16         BETA
*     ..
*     .. External Subroutines ..
      EXTERNAL           BLACS_GRIDINFO, DGEBR2D, DGEBS2D,
     $                   DGERV2D, DGESD2D, PBZTRAN,
     $                   PZMATGEN, ZGAMX2D, ZGEMM, ZGSUM2D,
     $                   ZLASET
*     ..
*     .. External Functions ..
      INTEGER            IZAMAX, NUMROC
      DOUBLE PRECISION   PDLAMCH
      EXTERNAL           IZAMAX, NUMROC, PDLAMCH
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, DBLE, MAX, MIN, MOD
*     ..
*     .. Executable Statements ..
*
*     Get needed initial parameters
*
      ICTXT = DESCA( CTXT_ )
      CALL BLACS_GRIDINFO( ICTXT, NPROW, NPCOL, MYROW, MYCOL )
*
      EPS = PDLAMCH( ICTXT, 'eps' )
      RESID = 0.0D+0
      DIVISOR = ANORM * EPS * DBLE( N )
*
      CALL INFOG2L( IA, JA, DESCA, NPROW, NPCOL, MYROW, MYCOL, IIA, JJA,
     $              IAROW, IACOL )
      CALL INFOG2L( IX, JX, DESCX, NPROW, NPCOL, MYROW, MYCOL, IIX, JJX,
     $              IXROW, IXCOL )
      IROFF = MOD( IA-1, DESCA( MB_ ) )
      ICOFF = MOD( JA-1, DESCA( NB_ ) )
      NP = NUMROC( N+IROFF, DESCA( MB_ ), MYROW, IAROW, NPROW )
      NQ = NUMROC( N+ICOFF, DESCA( NB_ ), MYCOL, IACOL, NPCOL )
*
      LDX = MAX( 1, NP )
      IPB = 1
      IPX = IPB + NP * DESCX( NB_ )
      IPA = IPX + NQ * DESCX( NB_ )
*
      IF( MYROW.EQ.IAROW )
     $   NP = NP - IROFF
      IF( MYCOL.EQ.IACOL )
     $   NQ = NQ - ICOFF
*
      ICURCOL = IXCOL
*
*     Loop over the rhs
*
      DO 40 J = 1, NRHS, DESCX( NB_ )
         JBRHS = MIN( DESCX( NB_ ), NRHS-J+1 )
*
*        Transpose x from ICURCOL to all rows
*
         IOFFX = IIX + ( JJX - 1 ) * DESCX( LLD_ )
         CALL PBZTRAN( ICTXT, 'Column', 'Transpose', N, JBRHS,
     $              DESCX( MB_ ), X( IOFFX ), DESCX( LLD_ ), ZERO,
     $              WORK( IPX ), JBRHS, IXROW, ICURCOL, -1, IACOL,
     $              WORK( IPA ) )
*
*        Regenerate B in IXCOL
*
         IF( MYCOL.EQ.ICURCOL ) THEN
            CALL PZMATGEN( ICTXT, 'N', 'N', DESCX( M_ ), DESCX( N_ ),
     $                     DESCX( MB_ ), DESCX( NB_ ), WORK( IPB ), LDX,
     $                     IXROW, IXCOL, IBSEED, IIX-1, NP, JJX-1,
     $                     JBRHS, MYROW, MYCOL, NPROW, NPCOL )
            BETA = ONE
         ELSE
            BETA = ZERO
         END IF
*
         IF( NQ.GT.0 ) THEN
            DO 10 II = IIA, IIA+NP-1, DESCA( MB_ )
               IB = MIN( DESCA( MB_ ), IIA+NP-II )
*
*              Regenerate ib rows of the matrix A(IA:IA+N-1,JA:JA+N-1).
*
               CALL PZMATGEN( ICTXT, SYMM, DIAG, DESCA( M_ ),
     $                        DESCA( N_ ), DESCA( MB_ ), DESCA( NB_ ),
     $                        WORK( IPA ), IB, DESCA( RSRC_ ),
     $                        DESCA( CSRC_ ), IASEED, II-1, IB,
     $                        JJA-1, NQ, MYROW, MYCOL, NPROW, NPCOL )
*
*              Compute B <= B - A * X.
*
               CALL ZGEMM( 'No transpose', 'Transpose', IB, JBRHS, NQ,
     $                     -ONE, WORK( IPA ), IB, WORK( IPX ), JBRHS,
     $                     BETA, WORK( IPB+II-IIA ), LDX )
*
   10       CONTINUE
*
         ELSE IF( MYCOL.NE.ICURCOL ) THEN
*
            CALL ZLASET( 'All', NP, JBRHS, ZERO, ZERO, WORK( IPB ),
     $                   LDX )
*
         END IF
*
*        Add B rowwise to ICURCOL
*
         CALL ZGSUM2D( ICTXT, 'Row', ' ', NP, JBRHS, WORK( IPB ), LDX,
     $                 MYROW, ICURCOL )
*
         IF( MYCOL.EQ.ICURCOL ) THEN
*
*           Figure || A * X - B || & || X ||
*
            IPW = IPA + JBRHS
            DO 20 JJ = 0, JBRHS - 1
               IF( NP.GT.0 ) THEN
                  II = IZAMAX( NP, WORK( IPB+JJ*LDX ), 1 )
                  WORK( IPA+JJ ) = ABS( WORK( IPB+II-1+JJ*LDX ) )
                  WORK( IPW+JJ ) = ABS( X( IOFFX + IZAMAX( NP,
     $            X( IOFFX + JJ*DESCX( LLD_ ) ), 1 )-1+JJ*
     $            DESCX( LLD_ ) ) )
               ELSE
                  WORK( IPA+JJ ) = ZERO
                  WORK( IPW+JJ ) = ZERO
               END IF
   20       CONTINUE
*
*           After ZGAMX2D computation,
*              WORK(IPB) has the maximum of || Ax - b ||, and
*              WORK(IPX) has the maximum of || X ||.
*
            CALL ZGAMX2D( ICTXT, 'Column', ' ', 1, 2*JBRHS,
     $                    WORK( IPA ), 1, IDUMM, IDUMM, -1, 0, ICURCOL )
*
*           Calculate residual = ||Ax-b|| / (||x||*||A||*eps*N)
*
            IF( MYROW.EQ.0 ) THEN
               DO 30 JJ = 0, JBRHS - 1
                  RESID1 = DBLE( WORK( IPA+JJ ) ) /
     $                     ( DBLE( WORK( IPW+JJ ) )*DIVISOR )
                  IF( RESID.LT.RESID1 )
     $               RESID = RESID1
   30          CONTINUE
               IF( MYCOL.NE.0 )
     $            CALL DGESD2D( ICTXT, 1, 1, RESID, 1, 0, 0 )
            END IF
*
         ELSE IF( MYROW.EQ.0 .AND. MYCOL.EQ.0 ) THEN
*
            CALL DGERV2D( ICTXT, 1, 1, RESID1, 1, 0, ICURCOL )
            IF( RESID.LT.RESID1 )
     $         RESID = RESID1
*
         END IF
*
         IF( MYCOL.EQ.ICURCOL )
     $      JJX = JJX + JBRHS
         ICURCOL = MOD( ICURCOL+1, NPCOL )
*
   40 CONTINUE
*
      IF( MYROW.EQ.0 .AND. MYCOL.EQ.0 ) THEN
         CALL DGEBS2D( ICTXT, 'All', ' ', 1, 1, RESID, 1 )
      ELSE
         CALL DGEBR2D( ICTXT, 'All', ' ', 1, 1, RESID, 1, 0, 0 )
      END IF
*
      RETURN
*
*     End of PZLASCHK
*
      END