| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 
 |       SUBROUTINE CHETD2( UPLO, N, A, LDA, D, E, TAU, INFO )
*
*  -- LAPACK routine (version 3.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     October 31, 1999
*
*     .. Scalar Arguments ..
      CHARACTER          UPLO
      INTEGER            INFO, LDA, N
*     ..
*     .. Array Arguments ..
      REAL               D( * ), E( * )
      COMPLEX            A( LDA, * ), TAU( * )
*     ..
*
*  Purpose
*  =======
*
*  CHETD2 reduces a complex Hermitian matrix A to real symmetric
*  tridiagonal form T by a unitary similarity transformation:
*  Q' * A * Q = T.
*
*  Arguments
*  =========
*
*  UPLO    (input) CHARACTER*1
*          Specifies whether the upper or lower triangular part of the
*          Hermitian matrix A is stored:
*          = 'U':  Upper triangular
*          = 'L':  Lower triangular
*
*  N       (input) INTEGER
*          The order of the matrix A.  N >= 0.
*
*  A       (input/output) COMPLEX array, dimension (LDA,N)
*          On entry, the Hermitian matrix A.  If UPLO = 'U', the leading
*          n-by-n upper triangular part of A contains the upper
*          triangular part of the matrix A, and the strictly lower
*          triangular part of A is not referenced.  If UPLO = 'L', the
*          leading n-by-n lower triangular part of A contains the lower
*          triangular part of the matrix A, and the strictly upper
*          triangular part of A is not referenced.
*          On exit, if UPLO = 'U', the diagonal and first superdiagonal
*          of A are overwritten by the corresponding elements of the
*          tridiagonal matrix T, and the elements above the first
*          superdiagonal, with the array TAU, represent the unitary
*          matrix Q as a product of elementary reflectors; if UPLO
*          = 'L', the diagonal and first subdiagonal of A are over-
*          written by the corresponding elements of the tridiagonal
*          matrix T, and the elements below the first subdiagonal, with
*          the array TAU, represent the unitary matrix Q as a product
*          of elementary reflectors. See Further Details.
*
*  LDA     (input) INTEGER
*          The leading dimension of the array A.  LDA >= max(1,N).
*
*  D       (output) REAL array, dimension (N)
*          The diagonal elements of the tridiagonal matrix T:
*          D(i) = A(i,i).
*
*  E       (output) REAL array, dimension (N-1)
*          The off-diagonal elements of the tridiagonal matrix T:
*          E(i) = A(i,i+1) if UPLO = 'U', E(i) = A(i+1,i) if UPLO = 'L'.
*
*  TAU     (output) COMPLEX array, dimension (N-1)
*          The scalar factors of the elementary reflectors (see Further
*          Details).
*
*  INFO    (output) INTEGER
*          = 0:  successful exit
*          < 0:  if INFO = -i, the i-th argument had an illegal value.
*
*  Further Details
*  ===============
*
*  If UPLO = 'U', the matrix Q is represented as a product of elementary
*  reflectors
*
*     Q = H(n-1) . . . H(2) H(1).
*
*  Each H(i) has the form
*
*     H(i) = I - tau * v * v'
*
*  where tau is a complex scalar, and v is a complex vector with
*  v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in
*  A(1:i-1,i+1), and tau in TAU(i).
*
*  If UPLO = 'L', the matrix Q is represented as a product of elementary
*  reflectors
*
*     Q = H(1) H(2) . . . H(n-1).
*
*  Each H(i) has the form
*
*     H(i) = I - tau * v * v'
*
*  where tau is a complex scalar, and v is a complex vector with
*  v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in A(i+2:n,i),
*  and tau in TAU(i).
*
*  The contents of A on exit are illustrated by the following examples
*  with n = 5:
*
*  if UPLO = 'U':                       if UPLO = 'L':
*
*    (  d   e   v2  v3  v4 )              (  d                  )
*    (      d   e   v3  v4 )              (  e   d              )
*    (          d   e   v4 )              (  v1  e   d          )
*    (              d   e  )              (  v1  v2  e   d      )
*    (                  d  )              (  v1  v2  v3  e   d  )
*
*  where d and e denote diagonal and off-diagonal elements of T, and vi
*  denotes an element of the vector defining H(i).
*
*  =====================================================================
*
*     .. Parameters ..
      COMPLEX            ONE, ZERO, HALF
      PARAMETER          ( ONE = ( 1.0E+0, 0.0E+0 ),
     $                   ZERO = ( 0.0E+0, 0.0E+0 ),
     $                   HALF = ( 0.5E+0, 0.0E+0 ) )
*     ..
*     .. Local Scalars ..
      LOGICAL            UPPER
      INTEGER            I
      COMPLEX            ALPHA, TAUI
*     ..
*     .. External Subroutines ..
      EXTERNAL           CAXPY, CHEMV, CHER2, CLARFG, XERBLA
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      COMPLEX            CDOTC
      EXTERNAL           LSAME, CDOTC
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAX, MIN, REAL
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters
*
      INFO = 0
      UPPER = LSAME( UPLO, 'U' )
      IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
         INFO = -1
      ELSE IF( N.LT.0 ) THEN
         INFO = -2
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
         INFO = -4
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'CHETD2', -INFO )
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( N.LE.0 )
     $   RETURN
*
      IF( UPPER ) THEN
*
*        Reduce the upper triangle of A
*
         A( N, N ) = REAL( A( N, N ) )
         DO 10 I = N - 1, 1, -1
*
*           Generate elementary reflector H(i) = I - tau * v * v'
*           to annihilate A(1:i-1,i+1)
*
            ALPHA = A( I, I+1 )
            CALL CLARFG( I, ALPHA, A( 1, I+1 ), 1, TAUI )
            E( I ) = ALPHA
*
            IF( TAUI.NE.ZERO ) THEN
*
*              Apply H(i) from both sides to A(1:i,1:i)
*
               A( I, I+1 ) = ONE
*
*              Compute  x := tau * A * v  storing x in TAU(1:i)
*
               CALL CHEMV( UPLO, I, TAUI, A, LDA, A( 1, I+1 ), 1, ZERO,
     $                     TAU, 1 )
*
*              Compute  w := x - 1/2 * tau * (x'*v) * v
*
               ALPHA = -HALF*TAUI*CDOTC( I, TAU, 1, A( 1, I+1 ), 1 )
               CALL CAXPY( I, ALPHA, A( 1, I+1 ), 1, TAU, 1 )
*
*              Apply the transformation as a rank-2 update:
*                 A := A - v * w' - w * v'
*
               CALL CHER2( UPLO, I, -ONE, A( 1, I+1 ), 1, TAU, 1, A,
     $                     LDA )
*
            ELSE
               A( I, I ) = REAL( A( I, I ) )
            END IF
            A( I, I+1 ) = E( I )
            D( I+1 ) = A( I+1, I+1 )
            TAU( I ) = TAUI
   10    CONTINUE
         D( 1 ) = A( 1, 1 )
      ELSE
*
*        Reduce the lower triangle of A
*
         A( 1, 1 ) = REAL( A( 1, 1 ) )
         DO 20 I = 1, N - 1
*
*           Generate elementary reflector H(i) = I - tau * v * v'
*           to annihilate A(i+2:n,i)
*
            ALPHA = A( I+1, I )
            CALL CLARFG( N-I, ALPHA, A( MIN( I+2, N ), I ), 1, TAUI )
            E( I ) = ALPHA
*
            IF( TAUI.NE.ZERO ) THEN
*
*              Apply H(i) from both sides to A(i+1:n,i+1:n)
*
               A( I+1, I ) = ONE
*
*              Compute  x := tau * A * v  storing y in TAU(i:n-1)
*
               CALL CHEMV( UPLO, N-I, TAUI, A( I+1, I+1 ), LDA,
     $                     A( I+1, I ), 1, ZERO, TAU( I ), 1 )
*
*              Compute  w := x - 1/2 * tau * (x'*v) * v
*
               ALPHA = -HALF*TAUI*CDOTC( N-I, TAU( I ), 1, A( I+1, I ),
     $                 1 )
               CALL CAXPY( N-I, ALPHA, A( I+1, I ), 1, TAU( I ), 1 )
*
*              Apply the transformation as a rank-2 update:
*                 A := A - v * w' - w * v'
*
               CALL CHER2( UPLO, N-I, -ONE, A( I+1, I ), 1, TAU( I ), 1,
     $                     A( I+1, I+1 ), LDA )
*
            ELSE
               A( I+1, I+1 ) = REAL( A( I+1, I+1 ) )
            END IF
            A( I+1, I ) = E( I )
            D( I ) = A( I, I )
            TAU( I ) = TAUI
   20    CONTINUE
         D( N ) = A( N, N )
      END IF
*
      RETURN
*
*     End of CHETD2
*
      END
 |