| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 
 |       SUBROUTINE DLAED7( ICOMPQ, N, QSIZ, TLVLS, CURLVL, CURPBM, D, Q,
     $                   LDQ, INDXQ, RHO, CUTPNT, QSTORE, QPTR, PRMPTR,
     $                   PERM, GIVPTR, GIVCOL, GIVNUM, WORK, IWORK,
     $                   INFO )
*
*  -- LAPACK routine (version 3.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     September 30, 1994
*
*     .. Scalar Arguments ..
      INTEGER            CURLVL, CURPBM, CUTPNT, ICOMPQ, INFO, LDQ, N,
     $                   QSIZ, TLVLS
      DOUBLE PRECISION   RHO
*     ..
*     .. Array Arguments ..
      INTEGER            GIVCOL( 2, * ), GIVPTR( * ), INDXQ( * ),
     $                   IWORK( * ), PERM( * ), PRMPTR( * ), QPTR( * )
      DOUBLE PRECISION   D( * ), GIVNUM( 2, * ), Q( LDQ, * ),
     $                   QSTORE( * ), WORK( * )
*     ..
*
*  Purpose
*  =======
*
*  DLAED7 computes the updated eigensystem of a diagonal
*  matrix after modification by a rank-one symmetric matrix. This
*  routine is used only for the eigenproblem which requires all
*  eigenvalues and optionally eigenvectors of a dense symmetric matrix
*  that has been reduced to tridiagonal form.  DLAED1 handles
*  the case in which all eigenvalues and eigenvectors of a symmetric
*  tridiagonal matrix are desired.
*
*    T = Q(in) ( D(in) + RHO * Z*Z' ) Q'(in) = Q(out) * D(out) * Q'(out)
*
*     where Z = Q'u, u is a vector of length N with ones in the
*     CUTPNT and CUTPNT + 1 th elements and zeros elsewhere.
*
*     The eigenvectors of the original matrix are stored in Q, and the
*     eigenvalues are in D.  The algorithm consists of three stages:
*
*        The first stage consists of deflating the size of the problem
*        when there are multiple eigenvalues or if there is a zero in
*        the Z vector.  For each such occurence the dimension of the
*        secular equation problem is reduced by one.  This stage is
*        performed by the routine DLAED8.
*
*        The second stage consists of calculating the updated
*        eigenvalues. This is done by finding the roots of the secular
*        equation via the routine DLAED4 (as called by DLAED9).
*        This routine also calculates the eigenvectors of the current
*        problem.
*
*        The final stage consists of computing the updated eigenvectors
*        directly using the updated eigenvalues.  The eigenvectors for
*        the current problem are multiplied with the eigenvectors from
*        the overall problem.
*
*  Arguments
*  =========
*
*  ICOMPQ  (input) INTEGER
*          = 0:  Compute eigenvalues only.
*          = 1:  Compute eigenvectors of original dense symmetric matrix
*                also.  On entry, Q contains the orthogonal matrix used
*                to reduce the original matrix to tridiagonal form.
*
*  N      (input) INTEGER
*         The dimension of the symmetric tridiagonal matrix.  N >= 0.
*
*  QSIZ   (input) INTEGER
*         The dimension of the orthogonal matrix used to reduce
*         the full matrix to tridiagonal form.  QSIZ >= N if ICOMPQ = 1.
*
*  TLVLS  (input) INTEGER
*         The total number of merging levels in the overall divide and
*         conquer tree.
*
*  CURLVL (input) INTEGER
*         The current level in the overall merge routine,
*         0 <= CURLVL <= TLVLS.
*
*  CURPBM (input) INTEGER
*         The current problem in the current level in the overall
*         merge routine (counting from upper left to lower right).
*
*  D      (input/output) DOUBLE PRECISION array, dimension (N)
*         On entry, the eigenvalues of the rank-1-perturbed matrix.
*         On exit, the eigenvalues of the repaired matrix.
*
*  Q      (input/output) DOUBLE PRECISION array, dimension (LDQ, N)
*         On entry, the eigenvectors of the rank-1-perturbed matrix.
*         On exit, the eigenvectors of the repaired tridiagonal matrix.
*
*  LDQ    (input) INTEGER
*         The leading dimension of the array Q.  LDQ >= max(1,N).
*
*  INDXQ  (output) INTEGER array, dimension (N)
*         The permutation which will reintegrate the subproblem just
*         solved back into sorted order, i.e., D( INDXQ( I = 1, N ) )
*         will be in ascending order.
*
*  RHO    (input) DOUBLE PRECISION
*         The subdiagonal element used to create the rank-1
*         modification.
*
*  CUTPNT (input) INTEGER
*         Contains the location of the last eigenvalue in the leading
*         sub-matrix.  min(1,N) <= CUTPNT <= N.
*
*  QSTORE (input/output) DOUBLE PRECISION array, dimension (N**2+1)
*         Stores eigenvectors of submatrices encountered during
*         divide and conquer, packed together. QPTR points to
*         beginning of the submatrices.
*
*  QPTR   (input/output) INTEGER array, dimension (N+2)
*         List of indices pointing to beginning of submatrices stored
*         in QSTORE. The submatrices are numbered starting at the
*         bottom left of the divide and conquer tree, from left to
*         right and bottom to top.
*
*  PRMPTR (input) INTEGER array, dimension (N lg N)
*         Contains a list of pointers which indicate where in PERM a
*         level's permutation is stored.  PRMPTR(i+1) - PRMPTR(i)
*         indicates the size of the permutation and also the size of
*         the full, non-deflated problem.
*
*  PERM   (input) INTEGER array, dimension (N lg N)
*         Contains the permutations (from deflation and sorting) to be
*         applied to each eigenblock.
*
*  GIVPTR (input) INTEGER array, dimension (N lg N)
*         Contains a list of pointers which indicate where in GIVCOL a
*         level's Givens rotations are stored.  GIVPTR(i+1) - GIVPTR(i)
*         indicates the number of Givens rotations.
*
*  GIVCOL (input) INTEGER array, dimension (2, N lg N)
*         Each pair of numbers indicates a pair of columns to take place
*         in a Givens rotation.
*
*  GIVNUM (input) DOUBLE PRECISION array, dimension (2, N lg N)
*         Each number indicates the S value to be used in the
*         corresponding Givens rotation.
*
*  WORK   (workspace) DOUBLE PRECISION array, dimension (3*N+QSIZ*N)
*
*  IWORK  (workspace) INTEGER array, dimension (4*N)
*
*  INFO   (output) INTEGER
*          = 0:  successful exit.
*          < 0:  if INFO = -i, the i-th argument had an illegal value.
*          > 0:  if INFO = 1, an eigenvalue did not converge
*
*  Further Details
*  ===============
*
*  Based on contributions by
*     Jeff Rutter, Computer Science Division, University of California
*     at Berkeley, USA
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ONE, ZERO
      PARAMETER          ( ONE = 1.0D0, ZERO = 0.0D0 )
*     ..
*     .. Local Scalars ..
      INTEGER            COLTYP, CURR, I, IDLMDA, INDX, INDXC, INDXP,
     $                   IQ2, IS, IW, IZ, K, LDQ2, N1, N2, PTR
*     ..
*     .. External Subroutines ..
      EXTERNAL           DGEMM, DLAED8, DLAED9, DLAEDA, DLAMRG, XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAX, MIN
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters.
*
      INFO = 0
*
      IF( ICOMPQ.LT.0 .OR. ICOMPQ.GT.1 ) THEN
         INFO = -1
      ELSE IF( N.LT.0 ) THEN
         INFO = -2
      ELSE IF( ICOMPQ.EQ.1 .AND. QSIZ.LT.N ) THEN
         INFO = -4
      ELSE IF( LDQ.LT.MAX( 1, N ) ) THEN
         INFO = -9
      ELSE IF( MIN( 1, N ).GT.CUTPNT .OR. N.LT.CUTPNT ) THEN
         INFO = -12
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'DLAED7', -INFO )
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( N.EQ.0 )
     $   RETURN
*
*     The following values are for bookkeeping purposes only.  They are
*     integer pointers which indicate the portion of the workspace
*     used by a particular array in DLAED8 and DLAED9.
*
      IF( ICOMPQ.EQ.1 ) THEN
         LDQ2 = QSIZ
      ELSE
         LDQ2 = N
      END IF
*
      IZ = 1
      IDLMDA = IZ + N
      IW = IDLMDA + N
      IQ2 = IW + N
      IS = IQ2 + N*LDQ2
*
      INDX = 1
      INDXC = INDX + N
      COLTYP = INDXC + N
      INDXP = COLTYP + N
*
*     Form the z-vector which consists of the last row of Q_1 and the
*     first row of Q_2.
*
      PTR = 1 + 2**TLVLS
      DO 10 I = 1, CURLVL - 1
         PTR = PTR + 2**( TLVLS-I )
   10 CONTINUE
      CURR = PTR + CURPBM
      CALL DLAEDA( N, TLVLS, CURLVL, CURPBM, PRMPTR, PERM, GIVPTR,
     $             GIVCOL, GIVNUM, QSTORE, QPTR, WORK( IZ ),
     $             WORK( IZ+N ), INFO )
*
*     When solving the final problem, we no longer need the stored data,
*     so we will overwrite the data from this level onto the previously
*     used storage space.
*
      IF( CURLVL.EQ.TLVLS ) THEN
         QPTR( CURR ) = 1
         PRMPTR( CURR ) = 1
         GIVPTR( CURR ) = 1
      END IF
*
*     Sort and Deflate eigenvalues.
*
      CALL DLAED8( ICOMPQ, K, N, QSIZ, D, Q, LDQ, INDXQ, RHO, CUTPNT,
     $             WORK( IZ ), WORK( IDLMDA ), WORK( IQ2 ), LDQ2,
     $             WORK( IW ), PERM( PRMPTR( CURR ) ), GIVPTR( CURR+1 ),
     $             GIVCOL( 1, GIVPTR( CURR ) ),
     $             GIVNUM( 1, GIVPTR( CURR ) ), IWORK( INDXP ),
     $             IWORK( INDX ), INFO )
      PRMPTR( CURR+1 ) = PRMPTR( CURR ) + N
      GIVPTR( CURR+1 ) = GIVPTR( CURR+1 ) + GIVPTR( CURR )
*
*     Solve Secular Equation.
*
      IF( K.NE.0 ) THEN
         CALL DLAED9( K, 1, K, N, D, WORK( IS ), K, RHO, WORK( IDLMDA ),
     $                WORK( IW ), QSTORE( QPTR( CURR ) ), K, INFO )
         IF( INFO.NE.0 )
     $      GO TO 30
         IF( ICOMPQ.EQ.1 ) THEN
            CALL DGEMM( 'N', 'N', QSIZ, K, K, ONE, WORK( IQ2 ), LDQ2,
     $                  QSTORE( QPTR( CURR ) ), K, ZERO, Q, LDQ )
         END IF
         QPTR( CURR+1 ) = QPTR( CURR ) + K**2
*
*     Prepare the INDXQ sorting permutation.
*
         N1 = K
         N2 = N - K
         CALL DLAMRG( N1, N2, D, 1, -1, INDXQ )
      ELSE
         QPTR( CURR+1 ) = QPTR( CURR )
         DO 20 I = 1, N
            INDXQ( I ) = I
   20    CONTINUE
      END IF
*
   30 CONTINUE
      RETURN
*
*     End of DLAED7
*
      END
 |