| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 
 |       SUBROUTINE DLAGTS( JOB, N, A, B, C, D, IN, Y, TOL, INFO )
*
*  -- LAPACK auxiliary routine (version 3.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     October 31, 1992
*
*     .. Scalar Arguments ..
      INTEGER            INFO, JOB, N
      DOUBLE PRECISION   TOL
*     ..
*     .. Array Arguments ..
      INTEGER            IN( * )
      DOUBLE PRECISION   A( * ), B( * ), C( * ), D( * ), Y( * )
*     ..
*
*  Purpose
*  =======
*
*  DLAGTS may be used to solve one of the systems of equations
*
*     (T - lambda*I)*x = y   or   (T - lambda*I)'*x = y,
*
*  where T is an n by n tridiagonal matrix, for x, following the
*  factorization of (T - lambda*I) as
*
*     (T - lambda*I) = P*L*U ,
*
*  by routine DLAGTF. The choice of equation to be solved is
*  controlled by the argument JOB, and in each case there is an option
*  to perturb zero or very small diagonal elements of U, this option
*  being intended for use in applications such as inverse iteration.
*
*  Arguments
*  =========
*
*  JOB     (input) INTEGER
*          Specifies the job to be performed by DLAGTS as follows:
*          =  1: The equations  (T - lambda*I)x = y  are to be solved,
*                but diagonal elements of U are not to be perturbed.
*          = -1: The equations  (T - lambda*I)x = y  are to be solved
*                and, if overflow would otherwise occur, the diagonal
*                elements of U are to be perturbed. See argument TOL
*                below.
*          =  2: The equations  (T - lambda*I)'x = y  are to be solved,
*                but diagonal elements of U are not to be perturbed.
*          = -2: The equations  (T - lambda*I)'x = y  are to be solved
*                and, if overflow would otherwise occur, the diagonal
*                elements of U are to be perturbed. See argument TOL
*                below.
*
*  N       (input) INTEGER
*          The order of the matrix T.
*
*  A       (input) DOUBLE PRECISION array, dimension (N)
*          On entry, A must contain the diagonal elements of U as
*          returned from DLAGTF.
*
*  B       (input) DOUBLE PRECISION array, dimension (N-1)
*          On entry, B must contain the first super-diagonal elements of
*          U as returned from DLAGTF.
*
*  C       (input) DOUBLE PRECISION array, dimension (N-1)
*          On entry, C must contain the sub-diagonal elements of L as
*          returned from DLAGTF.
*
*  D       (input) DOUBLE PRECISION array, dimension (N-2)
*          On entry, D must contain the second super-diagonal elements
*          of U as returned from DLAGTF.
*
*  IN      (input) INTEGER array, dimension (N)
*          On entry, IN must contain details of the matrix P as returned
*          from DLAGTF.
*
*  Y       (input/output) DOUBLE PRECISION array, dimension (N)
*          On entry, the right hand side vector y.
*          On exit, Y is overwritten by the solution vector x.
*
*  TOL     (input/output) DOUBLE PRECISION
*          On entry, with  JOB .lt. 0, TOL should be the minimum
*          perturbation to be made to very small diagonal elements of U.
*          TOL should normally be chosen as about eps*norm(U), where eps
*          is the relative machine precision, but if TOL is supplied as
*          non-positive, then it is reset to eps*max( abs( u(i,j) ) ).
*          If  JOB .gt. 0  then TOL is not referenced.
*
*          On exit, TOL is changed as described above, only if TOL is
*          non-positive on entry. Otherwise TOL is unchanged.
*
*  INFO    (output) INTEGER
*          = 0   : successful exit
*          .lt. 0: if INFO = -i, the i-th argument had an illegal value
*          .gt. 0: overflow would occur when computing the INFO(th)
*                  element of the solution vector x. This can only occur
*                  when JOB is supplied as positive and either means
*                  that a diagonal element of U is very small, or that
*                  the elements of the right-hand side vector y are very
*                  large.
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ONE, ZERO
      PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
*     ..
*     .. Local Scalars ..
      INTEGER            K
      DOUBLE PRECISION   ABSAK, AK, BIGNUM, EPS, PERT, SFMIN, TEMP
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, MAX, SIGN
*     ..
*     .. External Functions ..
      DOUBLE PRECISION   DLAMCH
      EXTERNAL           DLAMCH
*     ..
*     .. External Subroutines ..
      EXTERNAL           XERBLA
*     ..
*     .. Executable Statements ..
*
      INFO = 0
      IF( ( ABS( JOB ).GT.2 ) .OR. ( JOB.EQ.0 ) ) THEN
         INFO = -1
      ELSE IF( N.LT.0 ) THEN
         INFO = -2
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'DLAGTS', -INFO )
         RETURN
      END IF
*
      IF( N.EQ.0 )
     $   RETURN
*
      EPS = DLAMCH( 'Epsilon' )
      SFMIN = DLAMCH( 'Safe minimum' )
      BIGNUM = ONE / SFMIN
*
      IF( JOB.LT.0 ) THEN
         IF( TOL.LE.ZERO ) THEN
            TOL = ABS( A( 1 ) )
            IF( N.GT.1 )
     $         TOL = MAX( TOL, ABS( A( 2 ) ), ABS( B( 1 ) ) )
            DO 10 K = 3, N
               TOL = MAX( TOL, ABS( A( K ) ), ABS( B( K-1 ) ),
     $               ABS( D( K-2 ) ) )
   10       CONTINUE
            TOL = TOL*EPS
            IF( TOL.EQ.ZERO )
     $         TOL = EPS
         END IF
      END IF
*
      IF( ABS( JOB ).EQ.1 ) THEN
         DO 20 K = 2, N
            IF( IN( K-1 ).EQ.0 ) THEN
               Y( K ) = Y( K ) - C( K-1 )*Y( K-1 )
            ELSE
               TEMP = Y( K-1 )
               Y( K-1 ) = Y( K )
               Y( K ) = TEMP - C( K-1 )*Y( K )
            END IF
   20    CONTINUE
         IF( JOB.EQ.1 ) THEN
            DO 30 K = N, 1, -1
               IF( K.LE.N-2 ) THEN
                  TEMP = Y( K ) - B( K )*Y( K+1 ) - D( K )*Y( K+2 )
               ELSE IF( K.EQ.N-1 ) THEN
                  TEMP = Y( K ) - B( K )*Y( K+1 )
               ELSE
                  TEMP = Y( K )
               END IF
               AK = A( K )
               ABSAK = ABS( AK )
               IF( ABSAK.LT.ONE ) THEN
                  IF( ABSAK.LT.SFMIN ) THEN
                     IF( ABSAK.EQ.ZERO .OR. ABS( TEMP )*SFMIN.GT.ABSAK )
     $                    THEN
                        INFO = K
                        RETURN
                     ELSE
                        TEMP = TEMP*BIGNUM
                        AK = AK*BIGNUM
                     END IF
                  ELSE IF( ABS( TEMP ).GT.ABSAK*BIGNUM ) THEN
                     INFO = K
                     RETURN
                  END IF
               END IF
               Y( K ) = TEMP / AK
   30       CONTINUE
         ELSE
            DO 50 K = N, 1, -1
               IF( K.LE.N-2 ) THEN
                  TEMP = Y( K ) - B( K )*Y( K+1 ) - D( K )*Y( K+2 )
               ELSE IF( K.EQ.N-1 ) THEN
                  TEMP = Y( K ) - B( K )*Y( K+1 )
               ELSE
                  TEMP = Y( K )
               END IF
               AK = A( K )
               PERT = SIGN( TOL, AK )
   40          CONTINUE
               ABSAK = ABS( AK )
               IF( ABSAK.LT.ONE ) THEN
                  IF( ABSAK.LT.SFMIN ) THEN
                     IF( ABSAK.EQ.ZERO .OR. ABS( TEMP )*SFMIN.GT.ABSAK )
     $                    THEN
                        AK = AK + PERT
                        PERT = 2*PERT
                        GO TO 40
                     ELSE
                        TEMP = TEMP*BIGNUM
                        AK = AK*BIGNUM
                     END IF
                  ELSE IF( ABS( TEMP ).GT.ABSAK*BIGNUM ) THEN
                     AK = AK + PERT
                     PERT = 2*PERT
                     GO TO 40
                  END IF
               END IF
               Y( K ) = TEMP / AK
   50       CONTINUE
         END IF
      ELSE
*
*        Come to here if  JOB = 2 or -2
*
         IF( JOB.EQ.2 ) THEN
            DO 60 K = 1, N
               IF( K.GE.3 ) THEN
                  TEMP = Y( K ) - B( K-1 )*Y( K-1 ) - D( K-2 )*Y( K-2 )
               ELSE IF( K.EQ.2 ) THEN
                  TEMP = Y( K ) - B( K-1 )*Y( K-1 )
               ELSE
                  TEMP = Y( K )
               END IF
               AK = A( K )
               ABSAK = ABS( AK )
               IF( ABSAK.LT.ONE ) THEN
                  IF( ABSAK.LT.SFMIN ) THEN
                     IF( ABSAK.EQ.ZERO .OR. ABS( TEMP )*SFMIN.GT.ABSAK )
     $                    THEN
                        INFO = K
                        RETURN
                     ELSE
                        TEMP = TEMP*BIGNUM
                        AK = AK*BIGNUM
                     END IF
                  ELSE IF( ABS( TEMP ).GT.ABSAK*BIGNUM ) THEN
                     INFO = K
                     RETURN
                  END IF
               END IF
               Y( K ) = TEMP / AK
   60       CONTINUE
         ELSE
            DO 80 K = 1, N
               IF( K.GE.3 ) THEN
                  TEMP = Y( K ) - B( K-1 )*Y( K-1 ) - D( K-2 )*Y( K-2 )
               ELSE IF( K.EQ.2 ) THEN
                  TEMP = Y( K ) - B( K-1 )*Y( K-1 )
               ELSE
                  TEMP = Y( K )
               END IF
               AK = A( K )
               PERT = SIGN( TOL, AK )
   70          CONTINUE
               ABSAK = ABS( AK )
               IF( ABSAK.LT.ONE ) THEN
                  IF( ABSAK.LT.SFMIN ) THEN
                     IF( ABSAK.EQ.ZERO .OR. ABS( TEMP )*SFMIN.GT.ABSAK )
     $                    THEN
                        AK = AK + PERT
                        PERT = 2*PERT
                        GO TO 70
                     ELSE
                        TEMP = TEMP*BIGNUM
                        AK = AK*BIGNUM
                     END IF
                  ELSE IF( ABS( TEMP ).GT.ABSAK*BIGNUM ) THEN
                     AK = AK + PERT
                     PERT = 2*PERT
                     GO TO 70
                  END IF
               END IF
               Y( K ) = TEMP / AK
   80       CONTINUE
         END IF
*
         DO 90 K = N, 2, -1
            IF( IN( K-1 ).EQ.0 ) THEN
               Y( K-1 ) = Y( K-1 ) - C( K-1 )*Y( K )
            ELSE
               TEMP = Y( K-1 )
               Y( K-1 ) = Y( K )
               Y( K ) = TEMP - C( K-1 )*Y( K )
            END IF
   90    CONTINUE
      END IF
*
*     End of DLAGTS
*
      END
 |