| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 
 |       SUBROUTINE DLASQ1( N, D, E, WORK, INFO )
*
*  -- LAPACK routine (version 3.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     October 31, 1999 
*
*     .. Scalar Arguments ..
      INTEGER            INFO, N
*     ..
*     .. Array Arguments ..
      DOUBLE PRECISION   D( * ), E( * ), WORK( * )
*     ..
*
*  Purpose
*  =======
*
*  DLASQ1 computes the singular values of a real N-by-N bidiagonal
*  matrix with diagonal D and off-diagonal E. The singular values
*  are computed to high relative accuracy, in the absence of
*  denormalization, underflow and overflow. The algorithm was first
*  presented in
*
*  "Accurate singular values and differential qd algorithms" by K. V.
*  Fernando and B. N. Parlett, Numer. Math., Vol-67, No. 2, pp. 191-230,
*  1994,
*
*  and the present implementation is described in "An implementation of
*  the dqds Algorithm (Positive Case)", LAPACK Working Note.
*
*  Arguments
*  =========
*
*  N     (input) INTEGER
*        The number of rows and columns in the matrix. N >= 0.
*
*  D     (input/output) DOUBLE PRECISION array, dimension (N)
*        On entry, D contains the diagonal elements of the
*        bidiagonal matrix whose SVD is desired. On normal exit,
*        D contains the singular values in decreasing order.
*
*  E     (input/output) DOUBLE PRECISION array, dimension (N)
*        On entry, elements E(1:N-1) contain the off-diagonal elements
*        of the bidiagonal matrix whose SVD is desired.
*        On exit, E is overwritten.
*
*  WORK  (workspace) DOUBLE PRECISION array, dimension (4*N)
*
*  INFO  (output) INTEGER
*        = 0: successful exit
*        < 0: if INFO = -i, the i-th argument had an illegal value
*        > 0: the algorithm failed
*             = 1, a split was marked by a positive value in E
*             = 2, current block of Z not diagonalized after 30*N
*                  iterations (in inner while loop)
*             = 3, termination criterion of outer while loop not met 
*                  (program created more than N unreduced blocks)
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ZERO
      PARAMETER          ( ZERO = 0.0D0 )
*     ..
*     .. Local Scalars ..
      INTEGER            I, IINFO
      DOUBLE PRECISION   EPS, SCALE, SAFMIN, SIGMN, SIGMX
*     ..
*     .. External Subroutines ..
      EXTERNAL           DLAS2, DLASQ2, DLASRT, XERBLA
*     ..
*     .. External Functions ..
      DOUBLE PRECISION   DLAMCH
      EXTERNAL           DLAMCH
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, MAX, SQRT
*     ..
*     .. Executable Statements ..
*
      INFO = 0
      IF( N.LT.0 ) THEN
         INFO = -2
         CALL XERBLA( 'DLASQ1', -INFO )
         RETURN
      ELSE IF( N.EQ.0 ) THEN
         RETURN
      ELSE IF( N.EQ.1 ) THEN
         D( 1 ) = ABS( D( 1 ) )
         RETURN
      ELSE IF( N.EQ.2 ) THEN
         CALL DLAS2( D( 1 ), E( 1 ), D( 2 ), SIGMN, SIGMX )
         D( 1 ) = SIGMX
         D( 2 ) = SIGMN
         RETURN
      END IF
*
*     Estimate the largest singular value.
*
      SIGMX = ZERO
      DO 10 I = 1, N - 1
         D( I ) = ABS( D( I ) )
         SIGMX = MAX( SIGMX, ABS( E( I ) ) )
   10 CONTINUE
      D( N ) = ABS( D( N ) )
*
*     Early return if SIGMX is zero (matrix is already diagonal).
*
      IF( SIGMX.EQ.ZERO ) THEN
         CALL DLASRT( 'D', N, D, IINFO )
         RETURN
      END IF
*
      DO 20 I = 1, N
         SIGMX = MAX( SIGMX, D( I ) )
   20 CONTINUE
*
*     Copy D and E into WORK (in the Z format) and scale (squaring the
*     input data makes scaling by a power of the radix pointless).
*
      EPS = DLAMCH( 'Precision' )
      SAFMIN = DLAMCH( 'Safe minimum' )
      SCALE = SQRT( EPS / SAFMIN )
      CALL DCOPY( N, D, 1, WORK( 1 ), 2 )
      CALL DCOPY( N-1, E, 1, WORK( 2 ), 2 )
      CALL DLASCL( 'G', 0, 0, SIGMX, SCALE, 2*N-1, 1, WORK, 2*N-1,
     $             IINFO )
*         
*     Compute the q's and e's.
*
      DO 30 I = 1, 2*N - 1
         WORK( I ) = WORK( I )**2
   30 CONTINUE
      WORK( 2*N ) = ZERO
*
      CALL DLASQ2( N, WORK, INFO )
*
      IF( INFO.EQ.0 ) THEN
         DO 40 I = 1, N
            D( I ) = SQRT( WORK( I ) )
   40    CONTINUE
         CALL DLASCL( 'G', 0, 0, SCALE, SIGMX, N, 1, D, N, IINFO )
      END IF
*
      RETURN
*
*     End of DLASQ1
*
      END
 |