| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 
 |       SUBROUTINE DSTEQR( COMPZ, N, D, E, Z, LDZ, WORK, INFO )
*
*  -- LAPACK routine (version 3.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     September 30, 1994
*
*     .. Scalar Arguments ..
      CHARACTER          COMPZ
      INTEGER            INFO, LDZ, N
*     ..
*     .. Array Arguments ..
      DOUBLE PRECISION   D( * ), E( * ), WORK( * ), Z( LDZ, * )
*     ..
*
*  Purpose
*  =======
*
*  DSTEQR computes all eigenvalues and, optionally, eigenvectors of a
*  symmetric tridiagonal matrix using the implicit QL or QR method.
*  The eigenvectors of a full or band symmetric matrix can also be found
*  if DSYTRD or DSPTRD or DSBTRD has been used to reduce this matrix to
*  tridiagonal form.
*
*  Arguments
*  =========
*
*  COMPZ   (input) CHARACTER*1
*          = 'N':  Compute eigenvalues only.
*          = 'V':  Compute eigenvalues and eigenvectors of the original
*                  symmetric matrix.  On entry, Z must contain the
*                  orthogonal matrix used to reduce the original matrix
*                  to tridiagonal form.
*          = 'I':  Compute eigenvalues and eigenvectors of the
*                  tridiagonal matrix.  Z is initialized to the identity
*                  matrix.
*
*  N       (input) INTEGER
*          The order of the matrix.  N >= 0.
*
*  D       (input/output) DOUBLE PRECISION array, dimension (N)
*          On entry, the diagonal elements of the tridiagonal matrix.
*          On exit, if INFO = 0, the eigenvalues in ascending order.
*
*  E       (input/output) DOUBLE PRECISION array, dimension (N-1)
*          On entry, the (n-1) subdiagonal elements of the tridiagonal
*          matrix.
*          On exit, E has been destroyed.
*
*  Z       (input/output) DOUBLE PRECISION array, dimension (LDZ, N)
*          On entry, if  COMPZ = 'V', then Z contains the orthogonal
*          matrix used in the reduction to tridiagonal form.
*          On exit, if INFO = 0, then if  COMPZ = 'V', Z contains the
*          orthonormal eigenvectors of the original symmetric matrix,
*          and if COMPZ = 'I', Z contains the orthonormal eigenvectors
*          of the symmetric tridiagonal matrix.
*          If COMPZ = 'N', then Z is not referenced.
*
*  LDZ     (input) INTEGER
*          The leading dimension of the array Z.  LDZ >= 1, and if
*          eigenvectors are desired, then  LDZ >= max(1,N).
*
*  WORK    (workspace) DOUBLE PRECISION array, dimension (max(1,2*N-2))
*          If COMPZ = 'N', then WORK is not referenced.
*
*  INFO    (output) INTEGER
*          = 0:  successful exit
*          < 0:  if INFO = -i, the i-th argument had an illegal value
*          > 0:  the algorithm has failed to find all the eigenvalues in
*                a total of 30*N iterations; if INFO = i, then i
*                elements of E have not converged to zero; on exit, D
*                and E contain the elements of a symmetric tridiagonal
*                matrix which is orthogonally similar to the original
*                matrix.
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ZERO, ONE, TWO, THREE
      PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0, TWO = 2.0D0,
     $                   THREE = 3.0D0 )
      INTEGER            MAXIT
      PARAMETER          ( MAXIT = 30 )
*     ..
*     .. Local Scalars ..
      INTEGER            I, ICOMPZ, II, ISCALE, J, JTOT, K, L, L1, LEND,
     $                   LENDM1, LENDP1, LENDSV, LM1, LSV, M, MM, MM1,
     $                   NM1, NMAXIT
      DOUBLE PRECISION   ANORM, B, C, EPS, EPS2, F, G, P, R, RT1, RT2,
     $                   S, SAFMAX, SAFMIN, SSFMAX, SSFMIN, TST
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      DOUBLE PRECISION   DLAMCH, DLANST, DLAPY2
      EXTERNAL           LSAME, DLAMCH, DLANST, DLAPY2
*     ..
*     .. External Subroutines ..
      EXTERNAL           DLAE2, DLAEV2, DLARTG, DLASCL, DLASET, DLASR,
     $                   DLASRT, DSWAP, XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, MAX, SIGN, SQRT
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters.
*
      INFO = 0
*
      IF( LSAME( COMPZ, 'N' ) ) THEN
         ICOMPZ = 0
      ELSE IF( LSAME( COMPZ, 'V' ) ) THEN
         ICOMPZ = 1
      ELSE IF( LSAME( COMPZ, 'I' ) ) THEN
         ICOMPZ = 2
      ELSE
         ICOMPZ = -1
      END IF
      IF( ICOMPZ.LT.0 ) THEN
         INFO = -1
      ELSE IF( N.LT.0 ) THEN
         INFO = -2
      ELSE IF( ( LDZ.LT.1 ) .OR. ( ICOMPZ.GT.0 .AND. LDZ.LT.MAX( 1,
     $         N ) ) ) THEN
         INFO = -6
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'DSTEQR', -INFO )
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( N.EQ.0 )
     $   RETURN
*
      IF( N.EQ.1 ) THEN
         IF( ICOMPZ.EQ.2 )
     $      Z( 1, 1 ) = ONE
         RETURN
      END IF
*
*     Determine the unit roundoff and over/underflow thresholds.
*
      EPS = DLAMCH( 'E' )
      EPS2 = EPS**2
      SAFMIN = DLAMCH( 'S' )
      SAFMAX = ONE / SAFMIN
      SSFMAX = SQRT( SAFMAX ) / THREE
      SSFMIN = SQRT( SAFMIN ) / EPS2
*
*     Compute the eigenvalues and eigenvectors of the tridiagonal
*     matrix.
*
      IF( ICOMPZ.EQ.2 )
     $   CALL DLASET( 'Full', N, N, ZERO, ONE, Z, LDZ )
*
      NMAXIT = N*MAXIT
      JTOT = 0
*
*     Determine where the matrix splits and choose QL or QR iteration
*     for each block, according to whether top or bottom diagonal
*     element is smaller.
*
      L1 = 1
      NM1 = N - 1
*
   10 CONTINUE
      IF( L1.GT.N )
     $   GO TO 160
      IF( L1.GT.1 )
     $   E( L1-1 ) = ZERO
      IF( L1.LE.NM1 ) THEN
         DO 20 M = L1, NM1
            TST = ABS( E( M ) )
            IF( TST.EQ.ZERO )
     $         GO TO 30
            IF( TST.LE.( SQRT( ABS( D( M ) ) )*SQRT( ABS( D( M+
     $          1 ) ) ) )*EPS ) THEN
               E( M ) = ZERO
               GO TO 30
            END IF
   20    CONTINUE
      END IF
      M = N
*
   30 CONTINUE
      L = L1
      LSV = L
      LEND = M
      LENDSV = LEND
      L1 = M + 1
      IF( LEND.EQ.L )
     $   GO TO 10
*
*     Scale submatrix in rows and columns L to LEND
*
      ANORM = DLANST( 'I', LEND-L+1, D( L ), E( L ) )
      ISCALE = 0
      IF( ANORM.EQ.ZERO )
     $   GO TO 10
      IF( ANORM.GT.SSFMAX ) THEN
         ISCALE = 1
         CALL DLASCL( 'G', 0, 0, ANORM, SSFMAX, LEND-L+1, 1, D( L ), N,
     $                INFO )
         CALL DLASCL( 'G', 0, 0, ANORM, SSFMAX, LEND-L, 1, E( L ), N,
     $                INFO )
      ELSE IF( ANORM.LT.SSFMIN ) THEN
         ISCALE = 2
         CALL DLASCL( 'G', 0, 0, ANORM, SSFMIN, LEND-L+1, 1, D( L ), N,
     $                INFO )
         CALL DLASCL( 'G', 0, 0, ANORM, SSFMIN, LEND-L, 1, E( L ), N,
     $                INFO )
      END IF
*
*     Choose between QL and QR iteration
*
      IF( ABS( D( LEND ) ).LT.ABS( D( L ) ) ) THEN
         LEND = LSV
         L = LENDSV
      END IF
*
      IF( LEND.GT.L ) THEN
*
*        QL Iteration
*
*        Look for small subdiagonal element.
*
   40    CONTINUE
         IF( L.NE.LEND ) THEN
            LENDM1 = LEND - 1
            DO 50 M = L, LENDM1
               TST = ABS( E( M ) )**2
               IF( TST.LE.( EPS2*ABS( D( M ) ) )*ABS( D( M+1 ) )+
     $             SAFMIN )GO TO 60
   50       CONTINUE
         END IF
*
         M = LEND
*
   60    CONTINUE
         IF( M.LT.LEND )
     $      E( M ) = ZERO
         P = D( L )
         IF( M.EQ.L )
     $      GO TO 80
*
*        If remaining matrix is 2-by-2, use DLAE2 or SLAEV2
*        to compute its eigensystem.
*
         IF( M.EQ.L+1 ) THEN
            IF( ICOMPZ.GT.0 ) THEN
               CALL DLAEV2( D( L ), E( L ), D( L+1 ), RT1, RT2, C, S )
               WORK( L ) = C
               WORK( N-1+L ) = S
               CALL DLASR( 'R', 'V', 'B', N, 2, WORK( L ),
     $                     WORK( N-1+L ), Z( 1, L ), LDZ )
            ELSE
               CALL DLAE2( D( L ), E( L ), D( L+1 ), RT1, RT2 )
            END IF
            D( L ) = RT1
            D( L+1 ) = RT2
            E( L ) = ZERO
            L = L + 2
            IF( L.LE.LEND )
     $         GO TO 40
            GO TO 140
         END IF
*
         IF( JTOT.EQ.NMAXIT )
     $      GO TO 140
         JTOT = JTOT + 1
*
*        Form shift.
*
         G = ( D( L+1 )-P ) / ( TWO*E( L ) )
         R = DLAPY2( G, ONE )
         G = D( M ) - P + ( E( L ) / ( G+SIGN( R, G ) ) )
*
         S = ONE
         C = ONE
         P = ZERO
*
*        Inner loop
*
         MM1 = M - 1
         DO 70 I = MM1, L, -1
            F = S*E( I )
            B = C*E( I )
            CALL DLARTG( G, F, C, S, R )
            IF( I.NE.M-1 )
     $         E( I+1 ) = R
            G = D( I+1 ) - P
            R = ( D( I )-G )*S + TWO*C*B
            P = S*R
            D( I+1 ) = G + P
            G = C*R - B
*
*           If eigenvectors are desired, then save rotations.
*
            IF( ICOMPZ.GT.0 ) THEN
               WORK( I ) = C
               WORK( N-1+I ) = -S
            END IF
*
   70    CONTINUE
*
*        If eigenvectors are desired, then apply saved rotations.
*
         IF( ICOMPZ.GT.0 ) THEN
            MM = M - L + 1
            CALL DLASR( 'R', 'V', 'B', N, MM, WORK( L ), WORK( N-1+L ),
     $                  Z( 1, L ), LDZ )
         END IF
*
         D( L ) = D( L ) - P
         E( L ) = G
         GO TO 40
*
*        Eigenvalue found.
*
   80    CONTINUE
         D( L ) = P
*
         L = L + 1
         IF( L.LE.LEND )
     $      GO TO 40
         GO TO 140
*
      ELSE
*
*        QR Iteration
*
*        Look for small superdiagonal element.
*
   90    CONTINUE
         IF( L.NE.LEND ) THEN
            LENDP1 = LEND + 1
            DO 100 M = L, LENDP1, -1
               TST = ABS( E( M-1 ) )**2
               IF( TST.LE.( EPS2*ABS( D( M ) ) )*ABS( D( M-1 ) )+
     $             SAFMIN )GO TO 110
  100       CONTINUE
         END IF
*
         M = LEND
*
  110    CONTINUE
         IF( M.GT.LEND )
     $      E( M-1 ) = ZERO
         P = D( L )
         IF( M.EQ.L )
     $      GO TO 130
*
*        If remaining matrix is 2-by-2, use DLAE2 or SLAEV2
*        to compute its eigensystem.
*
         IF( M.EQ.L-1 ) THEN
            IF( ICOMPZ.GT.0 ) THEN
               CALL DLAEV2( D( L-1 ), E( L-1 ), D( L ), RT1, RT2, C, S )
               WORK( M ) = C
               WORK( N-1+M ) = S
               CALL DLASR( 'R', 'V', 'F', N, 2, WORK( M ),
     $                     WORK( N-1+M ), Z( 1, L-1 ), LDZ )
            ELSE
               CALL DLAE2( D( L-1 ), E( L-1 ), D( L ), RT1, RT2 )
            END IF
            D( L-1 ) = RT1
            D( L ) = RT2
            E( L-1 ) = ZERO
            L = L - 2
            IF( L.GE.LEND )
     $         GO TO 90
            GO TO 140
         END IF
*
         IF( JTOT.EQ.NMAXIT )
     $      GO TO 140
         JTOT = JTOT + 1
*
*        Form shift.
*
         G = ( D( L-1 )-P ) / ( TWO*E( L-1 ) )
         R = DLAPY2( G, ONE )
         G = D( M ) - P + ( E( L-1 ) / ( G+SIGN( R, G ) ) )
*
         S = ONE
         C = ONE
         P = ZERO
*
*        Inner loop
*
         LM1 = L - 1
         DO 120 I = M, LM1
            F = S*E( I )
            B = C*E( I )
            CALL DLARTG( G, F, C, S, R )
            IF( I.NE.M )
     $         E( I-1 ) = R
            G = D( I ) - P
            R = ( D( I+1 )-G )*S + TWO*C*B
            P = S*R
            D( I ) = G + P
            G = C*R - B
*
*           If eigenvectors are desired, then save rotations.
*
            IF( ICOMPZ.GT.0 ) THEN
               WORK( I ) = C
               WORK( N-1+I ) = S
            END IF
*
  120    CONTINUE
*
*        If eigenvectors are desired, then apply saved rotations.
*
         IF( ICOMPZ.GT.0 ) THEN
            MM = L - M + 1
            CALL DLASR( 'R', 'V', 'F', N, MM, WORK( M ), WORK( N-1+M ),
     $                  Z( 1, M ), LDZ )
         END IF
*
         D( L ) = D( L ) - P
         E( LM1 ) = G
         GO TO 90
*
*        Eigenvalue found.
*
  130    CONTINUE
         D( L ) = P
*
         L = L - 1
         IF( L.GE.LEND )
     $      GO TO 90
         GO TO 140
*
      END IF
*
*     Undo scaling if necessary
*
  140 CONTINUE
      IF( ISCALE.EQ.1 ) THEN
         CALL DLASCL( 'G', 0, 0, SSFMAX, ANORM, LENDSV-LSV+1, 1,
     $                D( LSV ), N, INFO )
         CALL DLASCL( 'G', 0, 0, SSFMAX, ANORM, LENDSV-LSV, 1, E( LSV ),
     $                N, INFO )
      ELSE IF( ISCALE.EQ.2 ) THEN
         CALL DLASCL( 'G', 0, 0, SSFMIN, ANORM, LENDSV-LSV+1, 1,
     $                D( LSV ), N, INFO )
         CALL DLASCL( 'G', 0, 0, SSFMIN, ANORM, LENDSV-LSV, 1, E( LSV ),
     $                N, INFO )
      END IF
*
*     Check for no convergence to an eigenvalue after a total
*     of N*MAXIT iterations.
*
      IF( JTOT.LT.NMAXIT )
     $   GO TO 10
      DO 150 I = 1, N - 1
         IF( E( I ).NE.ZERO )
     $      INFO = INFO + 1
  150 CONTINUE
      GO TO 190
*
*     Order eigenvalues and eigenvectors.
*
  160 CONTINUE
      IF( ICOMPZ.EQ.0 ) THEN
*
*        Use Quick Sort
*
         CALL DLASRT( 'I', N, D, INFO )
*
      ELSE
*
*        Use Selection Sort to minimize swaps of eigenvectors
*
         DO 180 II = 2, N
            I = II - 1
            K = I
            P = D( I )
            DO 170 J = II, N
               IF( D( J ).LT.P ) THEN
                  K = J
                  P = D( J )
               END IF
  170       CONTINUE
            IF( K.NE.I ) THEN
               D( K ) = D( I )
               D( I ) = P
               CALL DSWAP( N, Z( 1, I ), 1, Z( 1, K ), 1 )
            END IF
  180    CONTINUE
      END IF
*
  190 CONTINUE
      RETURN
*
*     End of DSTEQR
*
      END
 |