1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
  
     | 
    
            SUBROUTINE SLAE2( A, B, C, RT1, RT2 )
*
*  -- LAPACK auxiliary routine (version 3.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     October 31, 1992
*
*     .. Scalar Arguments ..
      REAL               A, B, C, RT1, RT2
*     ..
*
*  Purpose
*  =======
*
*  SLAE2  computes the eigenvalues of a 2-by-2 symmetric matrix
*     [  A   B  ]
*     [  B   C  ].
*  On return, RT1 is the eigenvalue of larger absolute value, and RT2
*  is the eigenvalue of smaller absolute value.
*
*  Arguments
*  =========
*
*  A       (input) REAL
*          The (1,1) element of the 2-by-2 matrix.
*
*  B       (input) REAL
*          The (1,2) and (2,1) elements of the 2-by-2 matrix.
*
*  C       (input) REAL
*          The (2,2) element of the 2-by-2 matrix.
*
*  RT1     (output) REAL
*          The eigenvalue of larger absolute value.
*
*  RT2     (output) REAL
*          The eigenvalue of smaller absolute value.
*
*  Further Details
*  ===============
*
*  RT1 is accurate to a few ulps barring over/underflow.
*
*  RT2 may be inaccurate if there is massive cancellation in the
*  determinant A*C-B*B; higher precision or correctly rounded or
*  correctly truncated arithmetic would be needed to compute RT2
*  accurately in all cases.
*
*  Overflow is possible only if RT1 is within a factor of 5 of overflow.
*  Underflow is harmless if the input data is 0 or exceeds
*     underflow_threshold / macheps.
*
* =====================================================================
*
*     .. Parameters ..
      REAL               ONE
      PARAMETER          ( ONE = 1.0E0 )
      REAL               TWO
      PARAMETER          ( TWO = 2.0E0 )
      REAL               ZERO
      PARAMETER          ( ZERO = 0.0E0 )
      REAL               HALF
      PARAMETER          ( HALF = 0.5E0 )
*     ..
*     .. Local Scalars ..
      REAL               AB, ACMN, ACMX, ADF, DF, RT, SM, TB
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, SQRT
*     ..
*     .. Executable Statements ..
*
*     Compute the eigenvalues
*
      SM = A + C
      DF = A - C
      ADF = ABS( DF )
      TB = B + B
      AB = ABS( TB )
      IF( ABS( A ).GT.ABS( C ) ) THEN
         ACMX = A
         ACMN = C
      ELSE
         ACMX = C
         ACMN = A
      END IF
      IF( ADF.GT.AB ) THEN
         RT = ADF*SQRT( ONE+( AB / ADF )**2 )
      ELSE IF( ADF.LT.AB ) THEN
         RT = AB*SQRT( ONE+( ADF / AB )**2 )
      ELSE
*
*        Includes case AB=ADF=0
*
         RT = AB*SQRT( TWO )
      END IF
      IF( SM.LT.ZERO ) THEN
         RT1 = HALF*( SM-RT )
*
*        Order of execution important.
*        To get fully accurate smaller eigenvalue,
*        next line needs to be executed in higher precision.
*
         RT2 = ( ACMX / RT1 )*ACMN - ( B / RT1 )*B
      ELSE IF( SM.GT.ZERO ) THEN
         RT1 = HALF*( SM+RT )
*
*        Order of execution important.
*        To get fully accurate smaller eigenvalue,
*        next line needs to be executed in higher precision.
*
         RT2 = ( ACMX / RT1 )*ACMN - ( B / RT1 )*B
      ELSE
*
*        Includes case RT1 = RT2 = 0
*
         RT1 = HALF*RT
         RT2 = -HALF*RT
      END IF
      RETURN
*
*     End of SLAE2
*
      END
 
     |