1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
  
     | 
    
            SUBROUTINE SLAGTS( JOB, N, A, B, C, D, IN, Y, TOL, INFO )
*
*  -- LAPACK auxiliary routine (version 3.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     October 31, 1992
*
*     .. Scalar Arguments ..
      INTEGER            INFO, JOB, N
      REAL               TOL
*     ..
*     .. Array Arguments ..
      INTEGER            IN( * )
      REAL               A( * ), B( * ), C( * ), D( * ), Y( * )
*     ..
*
*  Purpose
*  =======
*
*  SLAGTS may be used to solve one of the systems of equations
*
*     (T - lambda*I)*x = y   or   (T - lambda*I)'*x = y,
*
*  where T is an n by n tridiagonal matrix, for x, following the
*  factorization of (T - lambda*I) as
*
*     (T - lambda*I) = P*L*U ,
*
*  by routine SLAGTF. The choice of equation to be solved is
*  controlled by the argument JOB, and in each case there is an option
*  to perturb zero or very small diagonal elements of U, this option
*  being intended for use in applications such as inverse iteration.
*
*  Arguments
*  =========
*
*  JOB     (input) INTEGER
*          Specifies the job to be performed by SLAGTS as follows:
*          =  1: The equations  (T - lambda*I)x = y  are to be solved,
*                but diagonal elements of U are not to be perturbed.
*          = -1: The equations  (T - lambda*I)x = y  are to be solved
*                and, if overflow would otherwise occur, the diagonal
*                elements of U are to be perturbed. See argument TOL
*                below.
*          =  2: The equations  (T - lambda*I)'x = y  are to be solved,
*                but diagonal elements of U are not to be perturbed.
*          = -2: The equations  (T - lambda*I)'x = y  are to be solved
*                and, if overflow would otherwise occur, the diagonal
*                elements of U are to be perturbed. See argument TOL
*                below.
*
*  N       (input) INTEGER
*          The order of the matrix T.
*
*  A       (input) REAL array, dimension (N)
*          On entry, A must contain the diagonal elements of U as
*          returned from SLAGTF.
*
*  B       (input) REAL array, dimension (N-1)
*          On entry, B must contain the first super-diagonal elements of
*          U as returned from SLAGTF.
*
*  C       (input) REAL array, dimension (N-1)
*          On entry, C must contain the sub-diagonal elements of L as
*          returned from SLAGTF.
*
*  D       (input) REAL array, dimension (N-2)
*          On entry, D must contain the second super-diagonal elements
*          of U as returned from SLAGTF.
*
*  IN      (input) INTEGER array, dimension (N)
*          On entry, IN must contain details of the matrix P as returned
*          from SLAGTF.
*
*  Y       (input/output) REAL array, dimension (N)
*          On entry, the right hand side vector y.
*          On exit, Y is overwritten by the solution vector x.
*
*  TOL     (input/output) REAL
*          On entry, with  JOB .lt. 0, TOL should be the minimum
*          perturbation to be made to very small diagonal elements of U.
*          TOL should normally be chosen as about eps*norm(U), where eps
*          is the relative machine precision, but if TOL is supplied as
*          non-positive, then it is reset to eps*max( abs( u(i,j) ) ).
*          If  JOB .gt. 0  then TOL is not referenced.
*
*          On exit, TOL is changed as described above, only if TOL is
*          non-positive on entry. Otherwise TOL is unchanged.
*
*  INFO    (output) INTEGER
*          = 0   : successful exit
*          .lt. 0: if INFO = -i, the i-th argument had an illegal value
*          .gt. 0: overflow would occur when computing the INFO(th)
*                  element of the solution vector x. This can only occur
*                  when JOB is supplied as positive and either means
*                  that a diagonal element of U is very small, or that
*                  the elements of the right-hand side vector y are very
*                  large.
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ONE, ZERO
      PARAMETER          ( ONE = 1.0E+0, ZERO = 0.0E+0 )
*     ..
*     .. Local Scalars ..
      INTEGER            K
      REAL               ABSAK, AK, BIGNUM, EPS, PERT, SFMIN, TEMP
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, MAX, SIGN
*     ..
*     .. External Functions ..
      REAL               SLAMCH
      EXTERNAL           SLAMCH
*     ..
*     .. External Subroutines ..
      EXTERNAL           XERBLA
*     ..
*     .. Executable Statements ..
*
      INFO = 0
      IF( ( ABS( JOB ).GT.2 ) .OR. ( JOB.EQ.0 ) ) THEN
         INFO = -1
      ELSE IF( N.LT.0 ) THEN
         INFO = -2
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'SLAGTS', -INFO )
         RETURN
      END IF
*
      IF( N.EQ.0 )
     $   RETURN
*
      EPS = SLAMCH( 'Epsilon' )
      SFMIN = SLAMCH( 'Safe minimum' )
      BIGNUM = ONE / SFMIN
*
      IF( JOB.LT.0 ) THEN
         IF( TOL.LE.ZERO ) THEN
            TOL = ABS( A( 1 ) )
            IF( N.GT.1 )
     $         TOL = MAX( TOL, ABS( A( 2 ) ), ABS( B( 1 ) ) )
            DO 10 K = 3, N
               TOL = MAX( TOL, ABS( A( K ) ), ABS( B( K-1 ) ),
     $               ABS( D( K-2 ) ) )
   10       CONTINUE
            TOL = TOL*EPS
            IF( TOL.EQ.ZERO )
     $         TOL = EPS
         END IF
      END IF
*
      IF( ABS( JOB ).EQ.1 ) THEN
         DO 20 K = 2, N
            IF( IN( K-1 ).EQ.0 ) THEN
               Y( K ) = Y( K ) - C( K-1 )*Y( K-1 )
            ELSE
               TEMP = Y( K-1 )
               Y( K-1 ) = Y( K )
               Y( K ) = TEMP - C( K-1 )*Y( K )
            END IF
   20    CONTINUE
         IF( JOB.EQ.1 ) THEN
            DO 30 K = N, 1, -1
               IF( K.LE.N-2 ) THEN
                  TEMP = Y( K ) - B( K )*Y( K+1 ) - D( K )*Y( K+2 )
               ELSE IF( K.EQ.N-1 ) THEN
                  TEMP = Y( K ) - B( K )*Y( K+1 )
               ELSE
                  TEMP = Y( K )
               END IF
               AK = A( K )
               ABSAK = ABS( AK )
               IF( ABSAK.LT.ONE ) THEN
                  IF( ABSAK.LT.SFMIN ) THEN
                     IF( ABSAK.EQ.ZERO .OR. ABS( TEMP )*SFMIN.GT.ABSAK )
     $                    THEN
                        INFO = K
                        RETURN
                     ELSE
                        TEMP = TEMP*BIGNUM
                        AK = AK*BIGNUM
                     END IF
                  ELSE IF( ABS( TEMP ).GT.ABSAK*BIGNUM ) THEN
                     INFO = K
                     RETURN
                  END IF
               END IF
               Y( K ) = TEMP / AK
   30       CONTINUE
         ELSE
            DO 50 K = N, 1, -1
               IF( K.LE.N-2 ) THEN
                  TEMP = Y( K ) - B( K )*Y( K+1 ) - D( K )*Y( K+2 )
               ELSE IF( K.EQ.N-1 ) THEN
                  TEMP = Y( K ) - B( K )*Y( K+1 )
               ELSE
                  TEMP = Y( K )
               END IF
               AK = A( K )
               PERT = SIGN( TOL, AK )
   40          CONTINUE
               ABSAK = ABS( AK )
               IF( ABSAK.LT.ONE ) THEN
                  IF( ABSAK.LT.SFMIN ) THEN
                     IF( ABSAK.EQ.ZERO .OR. ABS( TEMP )*SFMIN.GT.ABSAK )
     $                    THEN
                        AK = AK + PERT
                        PERT = 2*PERT
                        GO TO 40
                     ELSE
                        TEMP = TEMP*BIGNUM
                        AK = AK*BIGNUM
                     END IF
                  ELSE IF( ABS( TEMP ).GT.ABSAK*BIGNUM ) THEN
                     AK = AK + PERT
                     PERT = 2*PERT
                     GO TO 40
                  END IF
               END IF
               Y( K ) = TEMP / AK
   50       CONTINUE
         END IF
      ELSE
*
*        Come to here if  JOB = 2 or -2
*
         IF( JOB.EQ.2 ) THEN
            DO 60 K = 1, N
               IF( K.GE.3 ) THEN
                  TEMP = Y( K ) - B( K-1 )*Y( K-1 ) - D( K-2 )*Y( K-2 )
               ELSE IF( K.EQ.2 ) THEN
                  TEMP = Y( K ) - B( K-1 )*Y( K-1 )
               ELSE
                  TEMP = Y( K )
               END IF
               AK = A( K )
               ABSAK = ABS( AK )
               IF( ABSAK.LT.ONE ) THEN
                  IF( ABSAK.LT.SFMIN ) THEN
                     IF( ABSAK.EQ.ZERO .OR. ABS( TEMP )*SFMIN.GT.ABSAK )
     $                    THEN
                        INFO = K
                        RETURN
                     ELSE
                        TEMP = TEMP*BIGNUM
                        AK = AK*BIGNUM
                     END IF
                  ELSE IF( ABS( TEMP ).GT.ABSAK*BIGNUM ) THEN
                     INFO = K
                     RETURN
                  END IF
               END IF
               Y( K ) = TEMP / AK
   60       CONTINUE
         ELSE
            DO 80 K = 1, N
               IF( K.GE.3 ) THEN
                  TEMP = Y( K ) - B( K-1 )*Y( K-1 ) - D( K-2 )*Y( K-2 )
               ELSE IF( K.EQ.2 ) THEN
                  TEMP = Y( K ) - B( K-1 )*Y( K-1 )
               ELSE
                  TEMP = Y( K )
               END IF
               AK = A( K )
               PERT = SIGN( TOL, AK )
   70          CONTINUE
               ABSAK = ABS( AK )
               IF( ABSAK.LT.ONE ) THEN
                  IF( ABSAK.LT.SFMIN ) THEN
                     IF( ABSAK.EQ.ZERO .OR. ABS( TEMP )*SFMIN.GT.ABSAK )
     $                    THEN
                        AK = AK + PERT
                        PERT = 2*PERT
                        GO TO 70
                     ELSE
                        TEMP = TEMP*BIGNUM
                        AK = AK*BIGNUM
                     END IF
                  ELSE IF( ABS( TEMP ).GT.ABSAK*BIGNUM ) THEN
                     AK = AK + PERT
                     PERT = 2*PERT
                     GO TO 70
                  END IF
               END IF
               Y( K ) = TEMP / AK
   80       CONTINUE
         END IF
*
         DO 90 K = N, 2, -1
            IF( IN( K-1 ).EQ.0 ) THEN
               Y( K-1 ) = Y( K-1 ) - C( K-1 )*Y( K )
            ELSE
               TEMP = Y( K-1 )
               Y( K-1 ) = Y( K )
               Y( K ) = TEMP - C( K-1 )*Y( K )
            END IF
   90    CONTINUE
      END IF
*
*     End of SLAGTS
*
      END
 
     |