| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 
 |       SUBROUTINE SLAS2( F, G, H, SSMIN, SSMAX )
*
*  -- LAPACK auxiliary routine (version 3.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     September 30, 1994
*
*     .. Scalar Arguments ..
      REAL               F, G, H, SSMAX, SSMIN
*     ..
*
*  Purpose
*  =======
*
*  SLAS2  computes the singular values of the 2-by-2 matrix
*     [  F   G  ]
*     [  0   H  ].
*  On return, SSMIN is the smaller singular value and SSMAX is the
*  larger singular value.
*
*  Arguments
*  =========
*
*  F       (input) REAL
*          The (1,1) element of the 2-by-2 matrix.
*
*  G       (input) REAL
*          The (1,2) element of the 2-by-2 matrix.
*
*  H       (input) REAL
*          The (2,2) element of the 2-by-2 matrix.
*
*  SSMIN   (output) REAL
*          The smaller singular value.
*
*  SSMAX   (output) REAL
*          The larger singular value.
*
*  Further Details
*  ===============
*
*  Barring over/underflow, all output quantities are correct to within
*  a few units in the last place (ulps), even in the absence of a guard
*  digit in addition/subtraction.
*
*  In IEEE arithmetic, the code works correctly if one matrix element is
*  infinite.
*
*  Overflow will not occur unless the largest singular value itself
*  overflows, or is within a few ulps of overflow. (On machines with
*  partial overflow, like the Cray, overflow may occur if the largest
*  singular value is within a factor of 2 of overflow.)
*
*  Underflow is harmless if underflow is gradual. Otherwise, results
*  may correspond to a matrix modified by perturbations of size near
*  the underflow threshold.
*
*  ====================================================================
*
*     .. Parameters ..
      REAL               ZERO
      PARAMETER          ( ZERO = 0.0E0 )
      REAL               ONE
      PARAMETER          ( ONE = 1.0E0 )
      REAL               TWO
      PARAMETER          ( TWO = 2.0E0 )
*     ..
*     .. Local Scalars ..
      REAL               AS, AT, AU, C, FA, FHMN, FHMX, GA, HA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, MAX, MIN, SQRT
*     ..
*     .. Executable Statements ..
*
      FA = ABS( F )
      GA = ABS( G )
      HA = ABS( H )
      FHMN = MIN( FA, HA )
      FHMX = MAX( FA, HA )
      IF( FHMN.EQ.ZERO ) THEN
         SSMIN = ZERO
         IF( FHMX.EQ.ZERO ) THEN
            SSMAX = GA
         ELSE
            SSMAX = MAX( FHMX, GA )*SQRT( ONE+
     $              ( MIN( FHMX, GA ) / MAX( FHMX, GA ) )**2 )
         END IF
      ELSE
         IF( GA.LT.FHMX ) THEN
            AS = ONE + FHMN / FHMX
            AT = ( FHMX-FHMN ) / FHMX
            AU = ( GA / FHMX )**2
            C = TWO / ( SQRT( AS*AS+AU )+SQRT( AT*AT+AU ) )
            SSMIN = FHMN*C
            SSMAX = FHMX / C
         ELSE
            AU = FHMX / GA
            IF( AU.EQ.ZERO ) THEN
*
*              Avoid possible harmful underflow if exponent range
*              asymmetric (true SSMIN may not underflow even if
*              AU underflows)
*
               SSMIN = ( FHMN*FHMX ) / GA
               SSMAX = GA
            ELSE
               AS = ONE + FHMN / FHMX
               AT = ( FHMX-FHMN ) / FHMX
               C = ONE / ( SQRT( ONE+( AS*AU )**2 )+
     $             SQRT( ONE+( AT*AU )**2 ) )
               SSMIN = ( FHMN*C )*AU
               SSMIN = SSMIN + SSMIN
               SSMAX = GA / ( C+C )
            END IF
         END IF
      END IF
      RETURN
*
*     End of SLAS2
*
      END
 |