1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
  
     | 
    
            SUBROUTINE ZPBTF2( UPLO, N, KD, AB, LDAB, INFO )
*
*  -- LAPACK routine (version 3.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     February 29, 1992
*
*     .. Scalar Arguments ..
      CHARACTER          UPLO
      INTEGER            INFO, KD, LDAB, N
*     ..
*     .. Array Arguments ..
      COMPLEX*16         AB( LDAB, * )
*     ..
*
*  Purpose
*  =======
*
*  ZPBTF2 computes the Cholesky factorization of a complex Hermitian
*  positive definite band matrix A.
*
*  The factorization has the form
*     A = U' * U ,  if UPLO = 'U', or
*     A = L  * L',  if UPLO = 'L',
*  where U is an upper triangular matrix, U' is the conjugate transpose
*  of U, and L is lower triangular.
*
*  This is the unblocked version of the algorithm, calling Level 2 BLAS.
*
*  Arguments
*  =========
*
*  UPLO    (input) CHARACTER*1
*          Specifies whether the upper or lower triangular part of the
*          Hermitian matrix A is stored:
*          = 'U':  Upper triangular
*          = 'L':  Lower triangular
*
*  N       (input) INTEGER
*          The order of the matrix A.  N >= 0.
*
*  KD      (input) INTEGER
*          The number of super-diagonals of the matrix A if UPLO = 'U',
*          or the number of sub-diagonals if UPLO = 'L'.  KD >= 0.
*
*  AB      (input/output) COMPLEX*16 array, dimension (LDAB,N)
*          On entry, the upper or lower triangle of the Hermitian band
*          matrix A, stored in the first KD+1 rows of the array.  The
*          j-th column of A is stored in the j-th column of the array AB
*          as follows:
*          if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
*          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd).
*
*          On exit, if INFO = 0, the triangular factor U or L from the
*          Cholesky factorization A = U'*U or A = L*L' of the band
*          matrix A, in the same storage format as A.
*
*  LDAB    (input) INTEGER
*          The leading dimension of the array AB.  LDAB >= KD+1.
*
*  INFO    (output) INTEGER
*          = 0: successful exit
*          < 0: if INFO = -k, the k-th argument had an illegal value
*          > 0: if INFO = k, the leading minor of order k is not
*               positive definite, and the factorization could not be
*               completed.
*
*  Further Details
*  ===============
*
*  The band storage scheme is illustrated by the following example, when
*  N = 6, KD = 2, and UPLO = 'U':
*
*  On entry:                       On exit:
*
*      *    *   a13  a24  a35  a46      *    *   u13  u24  u35  u46
*      *   a12  a23  a34  a45  a56      *   u12  u23  u34  u45  u56
*     a11  a22  a33  a44  a55  a66     u11  u22  u33  u44  u55  u66
*
*  Similarly, if UPLO = 'L' the format of A is as follows:
*
*  On entry:                       On exit:
*
*     a11  a22  a33  a44  a55  a66     l11  l22  l33  l44  l55  l66
*     a21  a32  a43  a54  a65   *      l21  l32  l43  l54  l65   *
*     a31  a42  a53  a64   *    *      l31  l42  l53  l64   *    *
*
*  Array elements marked * are not used by the routine.
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ONE, ZERO
      PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
*     ..
*     .. Local Scalars ..
      LOGICAL            UPPER
      INTEGER            J, KLD, KN
      DOUBLE PRECISION   AJJ
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
*     ..
*     .. External Subroutines ..
      EXTERNAL           XERBLA, ZDSCAL, ZHER, ZLACGV
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          DBLE, MAX, MIN, SQRT
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters.
*
      INFO = 0
      UPPER = LSAME( UPLO, 'U' )
      IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
         INFO = -1
      ELSE IF( N.LT.0 ) THEN
         INFO = -2
      ELSE IF( KD.LT.0 ) THEN
         INFO = -3
      ELSE IF( LDAB.LT.KD+1 ) THEN
         INFO = -5
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'ZPBTF2', -INFO )
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( N.EQ.0 )
     $   RETURN
*
      KLD = MAX( 1, LDAB-1 )
*
      IF( UPPER ) THEN
*
*        Compute the Cholesky factorization A = U'*U.
*
         DO 10 J = 1, N
*
*           Compute U(J,J) and test for non-positive-definiteness.
*
            AJJ = DBLE( AB( KD+1, J ) )
            IF( AJJ.LE.ZERO ) THEN
               AB( KD+1, J ) = AJJ
               GO TO 30
            END IF
            AJJ = SQRT( AJJ )
            AB( KD+1, J ) = AJJ
*
*           Compute elements J+1:J+KN of row J and update the
*           trailing submatrix within the band.
*
            KN = MIN( KD, N-J )
            IF( KN.GT.0 ) THEN
               CALL ZDSCAL( KN, ONE / AJJ, AB( KD, J+1 ), KLD )
               CALL ZLACGV( KN, AB( KD, J+1 ), KLD )
               CALL ZHER( 'Upper', KN, -ONE, AB( KD, J+1 ), KLD,
     $                    AB( KD+1, J+1 ), KLD )
               CALL ZLACGV( KN, AB( KD, J+1 ), KLD )
            END IF
   10    CONTINUE
      ELSE
*
*        Compute the Cholesky factorization A = L*L'.
*
         DO 20 J = 1, N
*
*           Compute L(J,J) and test for non-positive-definiteness.
*
            AJJ = DBLE( AB( 1, J ) )
            IF( AJJ.LE.ZERO ) THEN
               AB( 1, J ) = AJJ
               GO TO 30
            END IF
            AJJ = SQRT( AJJ )
            AB( 1, J ) = AJJ
*
*           Compute elements J+1:J+KN of column J and update the
*           trailing submatrix within the band.
*
            KN = MIN( KD, N-J )
            IF( KN.GT.0 ) THEN
               CALL ZDSCAL( KN, ONE / AJJ, AB( 2, J ), 1 )
               CALL ZHER( 'Lower', KN, -ONE, AB( 2, J ), 1,
     $                    AB( 1, J+1 ), KLD )
            END IF
   20    CONTINUE
      END IF
      RETURN
*
   30 CONTINUE
      INFO = J
      RETURN
*
*     End of ZPBTF2
*
      END
 
     |