| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 
 |       SUBROUTINE ZSYMV( UPLO, N, ALPHA, A, LDA, X, INCX, BETA, Y, INCY )
*
*  -- LAPACK auxiliary routine (version 3.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     October 31, 1992
*
*     .. Scalar Arguments ..
      CHARACTER          UPLO
      INTEGER            INCX, INCY, LDA, N
      COMPLEX*16         ALPHA, BETA
*     ..
*     .. Array Arguments ..
      COMPLEX*16         A( LDA, * ), X( * ), Y( * )
*     ..
*
*  Purpose
*  =======
*
*  ZSYMV  performs the matrix-vector  operation
*
*     y := alpha*A*x + beta*y,
*
*  where alpha and beta are scalars, x and y are n element vectors and
*  A is an n by n symmetric matrix.
*
*  Arguments
*  ==========
*
*  UPLO   - CHARACTER*1
*           On entry, UPLO specifies whether the upper or lower
*           triangular part of the array A is to be referenced as
*           follows:
*
*              UPLO = 'U' or 'u'   Only the upper triangular part of A
*                                  is to be referenced.
*
*              UPLO = 'L' or 'l'   Only the lower triangular part of A
*                                  is to be referenced.
*
*           Unchanged on exit.
*
*  N      - INTEGER
*           On entry, N specifies the order of the matrix A.
*           N must be at least zero.
*           Unchanged on exit.
*
*  ALPHA  - COMPLEX*16
*           On entry, ALPHA specifies the scalar alpha.
*           Unchanged on exit.
*
*  A      - COMPLEX*16 array, dimension ( LDA, N )
*           Before entry, with  UPLO = 'U' or 'u', the leading n by n
*           upper triangular part of the array A must contain the upper
*           triangular part of the symmetric matrix and the strictly
*           lower triangular part of A is not referenced.
*           Before entry, with UPLO = 'L' or 'l', the leading n by n
*           lower triangular part of the array A must contain the lower
*           triangular part of the symmetric matrix and the strictly
*           upper triangular part of A is not referenced.
*           Unchanged on exit.
*
*  LDA    - INTEGER
*           On entry, LDA specifies the first dimension of A as declared
*           in the calling (sub) program. LDA must be at least
*           max( 1, N ).
*           Unchanged on exit.
*
*  X      - COMPLEX*16 array, dimension at least
*           ( 1 + ( N - 1 )*abs( INCX ) ).
*           Before entry, the incremented array X must contain the N-
*           element vector x.
*           Unchanged on exit.
*
*  INCX   - INTEGER
*           On entry, INCX specifies the increment for the elements of
*           X. INCX must not be zero.
*           Unchanged on exit.
*
*  BETA   - COMPLEX*16
*           On entry, BETA specifies the scalar beta. When BETA is
*           supplied as zero then Y need not be set on input.
*           Unchanged on exit.
*
*  Y      - COMPLEX*16 array, dimension at least
*           ( 1 + ( N - 1 )*abs( INCY ) ).
*           Before entry, the incremented array Y must contain the n
*           element vector y. On exit, Y is overwritten by the updated
*           vector y.
*
*  INCY   - INTEGER
*           On entry, INCY specifies the increment for the elements of
*           Y. INCY must not be zero.
*           Unchanged on exit.
*
* =====================================================================
*
*     .. Parameters ..
      COMPLEX*16         ONE
      PARAMETER          ( ONE = ( 1.0D+0, 0.0D+0 ) )
      COMPLEX*16         ZERO
      PARAMETER          ( ZERO = ( 0.0D+0, 0.0D+0 ) )
*     ..
*     .. Local Scalars ..
      INTEGER            I, INFO, IX, IY, J, JX, JY, KX, KY
      COMPLEX*16         TEMP1, TEMP2
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
*     ..
*     .. External Subroutines ..
      EXTERNAL           XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAX
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters.
*
      INFO = 0
      IF( .NOT.LSAME( UPLO, 'U' ) .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
         INFO = 1
      ELSE IF( N.LT.0 ) THEN
         INFO = 2
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
         INFO = 5
      ELSE IF( INCX.EQ.0 ) THEN
         INFO = 7
      ELSE IF( INCY.EQ.0 ) THEN
         INFO = 10
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'ZSYMV ', INFO )
         RETURN
      END IF
*
*     Quick return if possible.
*
      IF( ( N.EQ.0 ) .OR. ( ( ALPHA.EQ.ZERO ) .AND. ( BETA.EQ.ONE ) ) )
     $   RETURN
*
*     Set up the start points in  X  and  Y.
*
      IF( INCX.GT.0 ) THEN
         KX = 1
      ELSE
         KX = 1 - ( N-1 )*INCX
      END IF
      IF( INCY.GT.0 ) THEN
         KY = 1
      ELSE
         KY = 1 - ( N-1 )*INCY
      END IF
*
*     Start the operations. In this version the elements of A are
*     accessed sequentially with one pass through the triangular part
*     of A.
*
*     First form  y := beta*y.
*
      IF( BETA.NE.ONE ) THEN
         IF( INCY.EQ.1 ) THEN
            IF( BETA.EQ.ZERO ) THEN
               DO 10 I = 1, N
                  Y( I ) = ZERO
   10          CONTINUE
            ELSE
               DO 20 I = 1, N
                  Y( I ) = BETA*Y( I )
   20          CONTINUE
            END IF
         ELSE
            IY = KY
            IF( BETA.EQ.ZERO ) THEN
               DO 30 I = 1, N
                  Y( IY ) = ZERO
                  IY = IY + INCY
   30          CONTINUE
            ELSE
               DO 40 I = 1, N
                  Y( IY ) = BETA*Y( IY )
                  IY = IY + INCY
   40          CONTINUE
            END IF
         END IF
      END IF
      IF( ALPHA.EQ.ZERO )
     $   RETURN
      IF( LSAME( UPLO, 'U' ) ) THEN
*
*        Form  y  when A is stored in upper triangle.
*
         IF( ( INCX.EQ.1 ) .AND. ( INCY.EQ.1 ) ) THEN
            DO 60 J = 1, N
               TEMP1 = ALPHA*X( J )
               TEMP2 = ZERO
               DO 50 I = 1, J - 1
                  Y( I ) = Y( I ) + TEMP1*A( I, J )
                  TEMP2 = TEMP2 + A( I, J )*X( I )
   50          CONTINUE
               Y( J ) = Y( J ) + TEMP1*A( J, J ) + ALPHA*TEMP2
   60       CONTINUE
         ELSE
            JX = KX
            JY = KY
            DO 80 J = 1, N
               TEMP1 = ALPHA*X( JX )
               TEMP2 = ZERO
               IX = KX
               IY = KY
               DO 70 I = 1, J - 1
                  Y( IY ) = Y( IY ) + TEMP1*A( I, J )
                  TEMP2 = TEMP2 + A( I, J )*X( IX )
                  IX = IX + INCX
                  IY = IY + INCY
   70          CONTINUE
               Y( JY ) = Y( JY ) + TEMP1*A( J, J ) + ALPHA*TEMP2
               JX = JX + INCX
               JY = JY + INCY
   80       CONTINUE
         END IF
      ELSE
*
*        Form  y  when A is stored in lower triangle.
*
         IF( ( INCX.EQ.1 ) .AND. ( INCY.EQ.1 ) ) THEN
            DO 100 J = 1, N
               TEMP1 = ALPHA*X( J )
               TEMP2 = ZERO
               Y( J ) = Y( J ) + TEMP1*A( J, J )
               DO 90 I = J + 1, N
                  Y( I ) = Y( I ) + TEMP1*A( I, J )
                  TEMP2 = TEMP2 + A( I, J )*X( I )
   90          CONTINUE
               Y( J ) = Y( J ) + ALPHA*TEMP2
  100       CONTINUE
         ELSE
            JX = KX
            JY = KY
            DO 120 J = 1, N
               TEMP1 = ALPHA*X( JX )
               TEMP2 = ZERO
               Y( JY ) = Y( JY ) + TEMP1*A( J, J )
               IX = JX
               IY = JY
               DO 110 I = J + 1, N
                  IX = IX + INCX
                  IY = IY + INCY
                  Y( IY ) = Y( IY ) + TEMP1*A( I, J )
                  TEMP2 = TEMP2 + A( I, J )*X( IX )
  110          CONTINUE
               Y( JY ) = Y( JY ) + ALPHA*TEMP2
               JX = JX + INCX
               JY = JY + INCY
  120       CONTINUE
         END IF
      END IF
*
      RETURN
*
*     End of ZSYMV
*
      END
 |