File: datrmv.f

package info (click to toggle)
scalapack 1.7.4-2
  • links: PTS
  • area: main
  • in suites: etch, etch-m68k
  • size: 34,004 kB
  • ctags: 30,444
  • sloc: fortran: 310,201; ansic: 64,027; makefile: 1,838; sh: 4
file content (422 lines) | stat: -rw-r--r-- 12,449 bytes parent folder | download | duplicates (12)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
      SUBROUTINE DATRMV( UPLO, TRANS, DIAG, N, ALPHA, A, LDA, X, INCX,
     $                   BETA, Y, INCY )
*
*  -- PBLAS auxiliary routine (version 2.0) --
*     University of Tennessee, Knoxville, Oak Ridge National Laboratory,
*     and University of California, Berkeley.
*     April 1, 1998
*
*     .. Scalar Arguments ..
      CHARACTER*1        DIAG, TRANS, UPLO
      INTEGER            INCX, INCY, LDA, N
      DOUBLE PRECISION   ALPHA, BETA
*     ..
*     .. Array Arguments ..
      DOUBLE PRECISION   A( LDA, * ), X( * ), Y( * )
*     ..
*
*  Purpose
*  =======
*
*  DATRMV performs one of the matrix-vector operations
*
*     y := abs( alpha )*abs( A )*abs( x )+ abs( beta*y ),
*
*     or
*
*     y := abs( alpha )*abs( A' )*abs( x ) + abs( beta*y ),
*
*  where  alpha  and  beta  are real scalars, y is a real vector, x is a
*  vector and A is an n by n unit or non-unit, upper or lower triangular
*  matrix.
*
*  Arguments
*  =========
*
*  UPLO    (input) CHARACTER*1
*          On entry,  UPLO  specifies  whether the matrix is an upper or
*          lower triangular matrix as follows:
*
*             UPLO = 'U' or 'u'   A is an upper triangular matrix.
*
*             UPLO = 'L' or 'l'   A is a lower triangular matrix.
*
*  TRANS   (input) CHARACTER*1
*          On entry,  TRANS  specifies  the operation to be performed as
*          follows:
*
*             TRANS = 'N' or 'n':
*                y := abs( alpha )*abs( A )*abs( x )+ abs( beta*y )
*
*             TRANS = 'T' or 't':
*                y := abs( alpha )*abs( A' )*abs( x ) + abs( beta*y )
*
*             TRANS = 'C' or 'c':
*                y := abs( alpha )*abs( A' )*abs( x ) + abs( beta*y )
*
*  DIAG    (input) CHARACTER*1
*          On entry, DIAG  specifies whether or not A is unit triangular
*          as follows:
*
*             DIAG = 'U' or 'u'  A is assumed to be unit triangular.
*
*             DIAG = 'N' or 'n'  A is not assumed to be unit triangular.
*
*  N       (input) INTEGER
*          On entry, N specifies the order of the matrix A. N must be at
*          least zero.
*
*  ALPHA   (input) DOUBLE PRECISION
*          On entry, ALPHA specifies the real scalar alpha.
*
*  A       (input) DOUBLE PRECISION array
*          On entry,  A  is an array of dimension (LDA,N).  Before entry
*          with UPLO = 'U' or 'u', the leading n by n part of the  array
*          A must contain the upper triangular part of the matrix A  and
*          the  strictly  lower  triangular part of A is not referenced.
*          When  UPLO = 'L' or 'l', the leading n by n part of the array
*          A  must contain the lower triangular part of the matrix A and
*          the  strictly  upper trapezoidal part of A is not referenced.
*          Note that when  DIAG = 'U' or 'u', the diagonal elements of A
*          are not referenced either, but are assumed to be unity.
*
*  LDA     (input) INTEGER
*          On entry, LDA specifies the leading dimension of the array A.
*          LDA must be at least max( 1, N ).
*
*  X       (input) DOUBLE PRECISION array of dimension at least
*          ( 1 + ( n - 1 )*abs( INCX ) ).  Before entry, the incremented
*          array X must contain the vector x.
*
*  INCX    (input) INTEGER
*          On entry, INCX specifies the increment for the elements of X.
*          INCX must not be zero.
*
*  BETA    (input) DOUBLE PRECISION
*          On entry,  BETA  specifies the real scalar beta. When BETA is
*          supplied as zero then Y need not be set on input.
*
*  Y       (input/output) DOUBLE PRECISION array of dimension at least
*          ( 1 + ( n - 1 )*abs( INCY ) ).  Before  entry with  BETA non-
*          zero, the  incremented array  Y must contain the vector y. On
*          exit, the  incremented array  Y is overwritten by the updated
*          vector y.
*
*  INCY    (input) INTEGER
*          On entry, INCY specifies the increment for the elements of Y.
*          INCY must not be zero.
*
*  -- Written on April 1, 1998 by
*     Antoine Petitet, University  of  Tennessee, Knoxville 37996, USA.
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ONE, ZERO
      PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
*     ..
*     .. Local Scalars ..
      INTEGER            I, INFO, IX, IY, J, JX, JY, KX, KY
      LOGICAL            NOUNIT
      DOUBLE PRECISION   ABSX, TALPHA, TEMP
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
*     ..
*     .. External Subroutines ..
      EXTERNAL           XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, MAX
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters.
*
      INFO = 0
      IF     ( .NOT.LSAME( UPLO , 'U' ).AND.
     $         .NOT.LSAME( UPLO , 'L' )      )THEN
         INFO = 1
      ELSE IF( .NOT.LSAME( TRANS, 'N' ).AND.
     $         .NOT.LSAME( TRANS, 'T' ).AND.
     $         .NOT.LSAME( TRANS, 'C' )      )THEN
         INFO = 2
      ELSE IF( .NOT.LSAME( DIAG , 'U' ).AND.
     $         .NOT.LSAME( DIAG , 'N' )      )THEN
         INFO = 3
      ELSE IF( N.LT.0 )THEN
         INFO = 4
      ELSE IF( LDA.LT.MAX( 1, N ) )THEN
         INFO = 7
      ELSE IF( INCX.EQ.0 )THEN
         INFO = 9
      ELSE IF( INCY.EQ.0 ) THEN
         INFO = 12
      END IF
      IF( INFO.NE.0 )THEN
         CALL XERBLA( 'DATRMV', INFO )
         RETURN
      END IF
*
*     Quick return if possible.
*
      IF( ( N.EQ.0 ).OR.
     $    ( ( ALPHA.EQ.ZERO ).AND.( BETA.EQ.ONE ) ) )
     $   RETURN
*
      NOUNIT = LSAME( DIAG , 'N' )
*
*     Set up the start points in  X  and  Y.
*
      IF( INCX.GT.0 ) THEN
         KX = 1
      ELSE
         KX = 1 - ( N - 1 ) * INCX
      END IF
      IF( INCY.GT.0 ) THEN
         KY = 1
      ELSE
         KY = 1 - ( N - 1 ) * INCY
      END IF
*
*     Start the operations. In this version the elements of A are
*     accessed sequentially with one pass through A.
*
*     First form  y := abs( beta*y ).
*
      IF( INCY.EQ.1 ) THEN
         IF( BETA.EQ.ZERO ) THEN
            DO 10, I = 1, N
               Y( I ) = ZERO
   10       CONTINUE
         ELSE IF( BETA.EQ.ONE ) THEN
            DO 20, I = 1, N
               Y( I ) = ABS( Y( I ) )
   20       CONTINUE
         ELSE
            DO 30, I = 1, N
               Y( I ) = ABS( BETA * Y( I ) )
   30       CONTINUE
         END IF
      ELSE
         IY = KY
         IF( BETA.EQ.ZERO ) THEN
            DO 40, I = 1, N
               Y( IY ) = ZERO
               IY      = IY + INCY
   40       CONTINUE
         ELSE IF( BETA.EQ.ONE ) THEN
            DO 50, I = 1, N
               Y( IY ) = ABS( Y( IY ) )
               IY      = IY + INCY
   50       CONTINUE
         ELSE
            DO 60, I = 1, N
               Y( IY ) = ABS( BETA * Y( IY ) )
               IY      = IY + INCY
   60       CONTINUE
         END IF
      END IF
*
      IF( ALPHA.EQ.ZERO )
     $   RETURN
*
      TALPHA = ABS( ALPHA )
*
      IF( LSAME( TRANS, 'N' ) )THEN
*
*        Form  y := abs( alpha ) * abs( A ) * abs( x ) + y.
*
         IF( LSAME( UPLO, 'U' ) )THEN
            JX = KX
            IF( INCY.EQ.1 ) THEN
               DO 80, J = 1, N
                  ABSX = ABS( X( JX ) )
                  IF( ABSX.NE.ZERO ) THEN
                     TEMP = TALPHA * ABSX
                     DO 70, I = 1, J - 1
                        Y( I ) = Y( I ) + TEMP * ABS( A( I, J ) )
   70                CONTINUE
*
                     IF( NOUNIT ) THEN
                        Y( J ) = Y( J ) + TEMP * ABS( A( J, J ) )
                     ELSE
                        Y( J ) = Y( J ) + TEMP
                     END IF
                  END IF
                  JX = JX + INCX
   80          CONTINUE
*
            ELSE
*
               DO 100, J = 1, N
                  ABSX = ABS( X( JX ) )
                  IF( ABSX.NE.ZERO ) THEN
                     TEMP = TALPHA * ABSX
                     IY   = KY
                     DO 90, I = 1, J - 1
                        Y( IY ) = Y( IY ) + TEMP * ABS( A( I, J ) )
                        IY      = IY      + INCY
   90                CONTINUE
*
                     IF( NOUNIT ) THEN
                        Y( IY ) = Y( IY ) + TEMP * ABS( A( J, J ) )
                     ELSE
                        Y( IY ) = Y( IY ) + TEMP
                     END IF
                  END IF
                  JX = JX + INCX
  100          CONTINUE
*
            END IF
*
         ELSE
*
            JX = KX
            IF( INCY.EQ.1 ) THEN
               DO 120, J = 1, N
                  ABSX = ABS( X( JX ) )
                  IF( ABSX.NE.ZERO ) THEN
*
                     TEMP = TALPHA * ABSX
*
                     IF( NOUNIT ) THEN
                        Y( J ) = Y( J ) + TEMP * ABS( A( J, J ) )
                     ELSE
                        Y( J ) = Y( J ) + TEMP
                     END IF
*
                     DO 110, I = J + 1, N
                        Y( I ) = Y( I ) + TEMP * ABS( A( I, J ) )
  110                CONTINUE
                  END IF
                  JX = JX + INCX
  120          CONTINUE
*
            ELSE
*
               DO 140, J = 1, N
                  ABSX = ABS( X( JX ) )
                  IF( ABSX.NE.ZERO ) THEN
                     TEMP = TALPHA * ABSX
                     IY   = KY + ( J - 1 ) * INCY
*
                     IF( NOUNIT ) THEN
                        Y( IY ) = Y( IY ) + TEMP * ABS( A( J, J ) )
                     ELSE
                        Y( IY ) = Y( IY ) + TEMP
                     END IF
*
                     DO 130, I = J + 1, N
                        IY      = IY      + INCY
                        Y( IY ) = Y( IY ) + TEMP * ABS( A( I, J ) )
  130                CONTINUE
                  END IF
                  JX = JX + INCX
  140          CONTINUE
*
            END IF
*
         END IF
*
      ELSE
*
*        Form  y := abs( alpha ) * abs( A' ) * abs( x ) + y.
*
         IF( LSAME( UPLO, 'U' ) )THEN
            JY = KY
            IF( INCX.EQ.1 ) THEN
               DO 160, J = 1, N
*
                  TEMP = ZERO
*
                  DO 150, I = 1, J - 1
                     TEMP = TEMP + ABS( A( I, J ) * X( I ) )
  150             CONTINUE
*
                  IF( NOUNIT ) THEN
                     TEMP = TEMP + ABS( A( J, J ) * X( J ) )
                  ELSE
                     TEMP = TEMP + ABS( X( J ) )
                  END IF
*
                  Y( JY ) = Y( JY ) + TALPHA * TEMP
                  JY      = JY      + INCY
*
  160          CONTINUE
*
            ELSE
*
               DO 180, J = 1, N
                  TEMP = ZERO
                  IX   = KX
                  DO 170, I = 1, J - 1
                     TEMP = TEMP + ABS( A( I, J ) * X( IX ) )
                     IX   = IX   + INCX
  170             CONTINUE
*
                  IF( NOUNIT ) THEN
                     TEMP = TEMP + ABS( A( J, J ) * X( IX ) )
                  ELSE
                     TEMP = TEMP + ABS( X( IX ) )
                  END IF
*
                  Y( JY ) = Y( JY ) + TALPHA * TEMP
                  JY      = JY      + INCY
*
  180          CONTINUE
*
            END IF
*
         ELSE
*
            JY = KY
            IF( INCX.EQ.1 ) THEN
*
               DO 200, J = 1, N
*
                  IF( NOUNIT ) THEN
                     TEMP = ABS( A( J, J ) * X( J ) )
                  ELSE
                     TEMP = ABS( X( J ) )
                  END IF
*
                  DO 190, I = J + 1, N
                     TEMP = TEMP + ABS( A( I, J ) * X( I ) )
  190             CONTINUE
*
                  Y( JY ) = Y( JY ) + TALPHA * TEMP
                  JY      = JY      + INCY
*
  200          CONTINUE
*
            ELSE
*
               DO 220, J = 1, N
*
                  IX   = KX + ( J - 1 ) * INCX
*
                  IF( NOUNIT ) THEN
                     TEMP = ABS( A( J, J ) * X( IX ) )
                  ELSE
                     TEMP = ABS( X( IX ) )
                  END IF
*
                  DO 210, I = J + 1, N
                     IX   = IX   + INCX
                     TEMP = TEMP + ABS( A( I, J ) * X( IX ) )
  210             CONTINUE
                  Y( JY ) = Y( JY ) + TALPHA * TEMP
                  JY      = JY      + INCY
  220          CONTINUE
            END IF
         END IF
*
      END IF
*
      RETURN
*
*     End of DATRMV
*
      END