1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
|
SUBROUTINE DATRMV( UPLO, TRANS, DIAG, N, ALPHA, A, LDA, X, INCX,
$ BETA, Y, INCY )
*
* -- PBLAS auxiliary routine (version 2.0) --
* University of Tennessee, Knoxville, Oak Ridge National Laboratory,
* and University of California, Berkeley.
* April 1, 1998
*
* .. Scalar Arguments ..
CHARACTER*1 DIAG, TRANS, UPLO
INTEGER INCX, INCY, LDA, N
DOUBLE PRECISION ALPHA, BETA
* ..
* .. Array Arguments ..
DOUBLE PRECISION A( LDA, * ), X( * ), Y( * )
* ..
*
* Purpose
* =======
*
* DATRMV performs one of the matrix-vector operations
*
* y := abs( alpha )*abs( A )*abs( x )+ abs( beta*y ),
*
* or
*
* y := abs( alpha )*abs( A' )*abs( x ) + abs( beta*y ),
*
* where alpha and beta are real scalars, y is a real vector, x is a
* vector and A is an n by n unit or non-unit, upper or lower triangular
* matrix.
*
* Arguments
* =========
*
* UPLO (input) CHARACTER*1
* On entry, UPLO specifies whether the matrix is an upper or
* lower triangular matrix as follows:
*
* UPLO = 'U' or 'u' A is an upper triangular matrix.
*
* UPLO = 'L' or 'l' A is a lower triangular matrix.
*
* TRANS (input) CHARACTER*1
* On entry, TRANS specifies the operation to be performed as
* follows:
*
* TRANS = 'N' or 'n':
* y := abs( alpha )*abs( A )*abs( x )+ abs( beta*y )
*
* TRANS = 'T' or 't':
* y := abs( alpha )*abs( A' )*abs( x ) + abs( beta*y )
*
* TRANS = 'C' or 'c':
* y := abs( alpha )*abs( A' )*abs( x ) + abs( beta*y )
*
* DIAG (input) CHARACTER*1
* On entry, DIAG specifies whether or not A is unit triangular
* as follows:
*
* DIAG = 'U' or 'u' A is assumed to be unit triangular.
*
* DIAG = 'N' or 'n' A is not assumed to be unit triangular.
*
* N (input) INTEGER
* On entry, N specifies the order of the matrix A. N must be at
* least zero.
*
* ALPHA (input) DOUBLE PRECISION
* On entry, ALPHA specifies the real scalar alpha.
*
* A (input) DOUBLE PRECISION array
* On entry, A is an array of dimension (LDA,N). Before entry
* with UPLO = 'U' or 'u', the leading n by n part of the array
* A must contain the upper triangular part of the matrix A and
* the strictly lower triangular part of A is not referenced.
* When UPLO = 'L' or 'l', the leading n by n part of the array
* A must contain the lower triangular part of the matrix A and
* the strictly upper trapezoidal part of A is not referenced.
* Note that when DIAG = 'U' or 'u', the diagonal elements of A
* are not referenced either, but are assumed to be unity.
*
* LDA (input) INTEGER
* On entry, LDA specifies the leading dimension of the array A.
* LDA must be at least max( 1, N ).
*
* X (input) DOUBLE PRECISION array of dimension at least
* ( 1 + ( n - 1 )*abs( INCX ) ). Before entry, the incremented
* array X must contain the vector x.
*
* INCX (input) INTEGER
* On entry, INCX specifies the increment for the elements of X.
* INCX must not be zero.
*
* BETA (input) DOUBLE PRECISION
* On entry, BETA specifies the real scalar beta. When BETA is
* supplied as zero then Y need not be set on input.
*
* Y (input/output) DOUBLE PRECISION array of dimension at least
* ( 1 + ( n - 1 )*abs( INCY ) ). Before entry with BETA non-
* zero, the incremented array Y must contain the vector y. On
* exit, the incremented array Y is overwritten by the updated
* vector y.
*
* INCY (input) INTEGER
* On entry, INCY specifies the increment for the elements of Y.
* INCY must not be zero.
*
* -- Written on April 1, 1998 by
* Antoine Petitet, University of Tennessee, Knoxville 37996, USA.
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ONE, ZERO
PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
* ..
* .. Local Scalars ..
INTEGER I, INFO, IX, IY, J, JX, JY, KX, KY
LOGICAL NOUNIT
DOUBLE PRECISION ABSX, TALPHA, TEMP
* ..
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
* ..
* .. External Subroutines ..
EXTERNAL XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, MAX
* ..
* .. Executable Statements ..
*
* Test the input parameters.
*
INFO = 0
IF ( .NOT.LSAME( UPLO , 'U' ).AND.
$ .NOT.LSAME( UPLO , 'L' ) )THEN
INFO = 1
ELSE IF( .NOT.LSAME( TRANS, 'N' ).AND.
$ .NOT.LSAME( TRANS, 'T' ).AND.
$ .NOT.LSAME( TRANS, 'C' ) )THEN
INFO = 2
ELSE IF( .NOT.LSAME( DIAG , 'U' ).AND.
$ .NOT.LSAME( DIAG , 'N' ) )THEN
INFO = 3
ELSE IF( N.LT.0 )THEN
INFO = 4
ELSE IF( LDA.LT.MAX( 1, N ) )THEN
INFO = 7
ELSE IF( INCX.EQ.0 )THEN
INFO = 9
ELSE IF( INCY.EQ.0 ) THEN
INFO = 12
END IF
IF( INFO.NE.0 )THEN
CALL XERBLA( 'DATRMV', INFO )
RETURN
END IF
*
* Quick return if possible.
*
IF( ( N.EQ.0 ).OR.
$ ( ( ALPHA.EQ.ZERO ).AND.( BETA.EQ.ONE ) ) )
$ RETURN
*
NOUNIT = LSAME( DIAG , 'N' )
*
* Set up the start points in X and Y.
*
IF( INCX.GT.0 ) THEN
KX = 1
ELSE
KX = 1 - ( N - 1 ) * INCX
END IF
IF( INCY.GT.0 ) THEN
KY = 1
ELSE
KY = 1 - ( N - 1 ) * INCY
END IF
*
* Start the operations. In this version the elements of A are
* accessed sequentially with one pass through A.
*
* First form y := abs( beta*y ).
*
IF( INCY.EQ.1 ) THEN
IF( BETA.EQ.ZERO ) THEN
DO 10, I = 1, N
Y( I ) = ZERO
10 CONTINUE
ELSE IF( BETA.EQ.ONE ) THEN
DO 20, I = 1, N
Y( I ) = ABS( Y( I ) )
20 CONTINUE
ELSE
DO 30, I = 1, N
Y( I ) = ABS( BETA * Y( I ) )
30 CONTINUE
END IF
ELSE
IY = KY
IF( BETA.EQ.ZERO ) THEN
DO 40, I = 1, N
Y( IY ) = ZERO
IY = IY + INCY
40 CONTINUE
ELSE IF( BETA.EQ.ONE ) THEN
DO 50, I = 1, N
Y( IY ) = ABS( Y( IY ) )
IY = IY + INCY
50 CONTINUE
ELSE
DO 60, I = 1, N
Y( IY ) = ABS( BETA * Y( IY ) )
IY = IY + INCY
60 CONTINUE
END IF
END IF
*
IF( ALPHA.EQ.ZERO )
$ RETURN
*
TALPHA = ABS( ALPHA )
*
IF( LSAME( TRANS, 'N' ) )THEN
*
* Form y := abs( alpha ) * abs( A ) * abs( x ) + y.
*
IF( LSAME( UPLO, 'U' ) )THEN
JX = KX
IF( INCY.EQ.1 ) THEN
DO 80, J = 1, N
ABSX = ABS( X( JX ) )
IF( ABSX.NE.ZERO ) THEN
TEMP = TALPHA * ABSX
DO 70, I = 1, J - 1
Y( I ) = Y( I ) + TEMP * ABS( A( I, J ) )
70 CONTINUE
*
IF( NOUNIT ) THEN
Y( J ) = Y( J ) + TEMP * ABS( A( J, J ) )
ELSE
Y( J ) = Y( J ) + TEMP
END IF
END IF
JX = JX + INCX
80 CONTINUE
*
ELSE
*
DO 100, J = 1, N
ABSX = ABS( X( JX ) )
IF( ABSX.NE.ZERO ) THEN
TEMP = TALPHA * ABSX
IY = KY
DO 90, I = 1, J - 1
Y( IY ) = Y( IY ) + TEMP * ABS( A( I, J ) )
IY = IY + INCY
90 CONTINUE
*
IF( NOUNIT ) THEN
Y( IY ) = Y( IY ) + TEMP * ABS( A( J, J ) )
ELSE
Y( IY ) = Y( IY ) + TEMP
END IF
END IF
JX = JX + INCX
100 CONTINUE
*
END IF
*
ELSE
*
JX = KX
IF( INCY.EQ.1 ) THEN
DO 120, J = 1, N
ABSX = ABS( X( JX ) )
IF( ABSX.NE.ZERO ) THEN
*
TEMP = TALPHA * ABSX
*
IF( NOUNIT ) THEN
Y( J ) = Y( J ) + TEMP * ABS( A( J, J ) )
ELSE
Y( J ) = Y( J ) + TEMP
END IF
*
DO 110, I = J + 1, N
Y( I ) = Y( I ) + TEMP * ABS( A( I, J ) )
110 CONTINUE
END IF
JX = JX + INCX
120 CONTINUE
*
ELSE
*
DO 140, J = 1, N
ABSX = ABS( X( JX ) )
IF( ABSX.NE.ZERO ) THEN
TEMP = TALPHA * ABSX
IY = KY + ( J - 1 ) * INCY
*
IF( NOUNIT ) THEN
Y( IY ) = Y( IY ) + TEMP * ABS( A( J, J ) )
ELSE
Y( IY ) = Y( IY ) + TEMP
END IF
*
DO 130, I = J + 1, N
IY = IY + INCY
Y( IY ) = Y( IY ) + TEMP * ABS( A( I, J ) )
130 CONTINUE
END IF
JX = JX + INCX
140 CONTINUE
*
END IF
*
END IF
*
ELSE
*
* Form y := abs( alpha ) * abs( A' ) * abs( x ) + y.
*
IF( LSAME( UPLO, 'U' ) )THEN
JY = KY
IF( INCX.EQ.1 ) THEN
DO 160, J = 1, N
*
TEMP = ZERO
*
DO 150, I = 1, J - 1
TEMP = TEMP + ABS( A( I, J ) * X( I ) )
150 CONTINUE
*
IF( NOUNIT ) THEN
TEMP = TEMP + ABS( A( J, J ) * X( J ) )
ELSE
TEMP = TEMP + ABS( X( J ) )
END IF
*
Y( JY ) = Y( JY ) + TALPHA * TEMP
JY = JY + INCY
*
160 CONTINUE
*
ELSE
*
DO 180, J = 1, N
TEMP = ZERO
IX = KX
DO 170, I = 1, J - 1
TEMP = TEMP + ABS( A( I, J ) * X( IX ) )
IX = IX + INCX
170 CONTINUE
*
IF( NOUNIT ) THEN
TEMP = TEMP + ABS( A( J, J ) * X( IX ) )
ELSE
TEMP = TEMP + ABS( X( IX ) )
END IF
*
Y( JY ) = Y( JY ) + TALPHA * TEMP
JY = JY + INCY
*
180 CONTINUE
*
END IF
*
ELSE
*
JY = KY
IF( INCX.EQ.1 ) THEN
*
DO 200, J = 1, N
*
IF( NOUNIT ) THEN
TEMP = ABS( A( J, J ) * X( J ) )
ELSE
TEMP = ABS( X( J ) )
END IF
*
DO 190, I = J + 1, N
TEMP = TEMP + ABS( A( I, J ) * X( I ) )
190 CONTINUE
*
Y( JY ) = Y( JY ) + TALPHA * TEMP
JY = JY + INCY
*
200 CONTINUE
*
ELSE
*
DO 220, J = 1, N
*
IX = KX + ( J - 1 ) * INCX
*
IF( NOUNIT ) THEN
TEMP = ABS( A( J, J ) * X( IX ) )
ELSE
TEMP = ABS( X( IX ) )
END IF
*
DO 210, I = J + 1, N
IX = IX + INCX
TEMP = TEMP + ABS( A( I, J ) * X( IX ) )
210 CONTINUE
Y( JY ) = Y( JY ) + TALPHA * TEMP
JY = JY + INCY
220 CONTINUE
END IF
END IF
*
END IF
*
RETURN
*
* End of DATRMV
*
END
|