1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
|
SUBROUTINE DTZPADCPY( UPLO, DIAG, M, N, IOFFD, A, LDA, B, LDB )
*
* -- PBLAS auxiliary routine (version 2.0) --
* University of Tennessee, Knoxville, Oak Ridge National Laboratory,
* and University of California, Berkeley.
* April 1, 1998
*
* .. Scalar Arguments ..
CHARACTER*1 DIAG, UPLO
INTEGER IOFFD, LDA, LDB, M, N
* ..
* .. Array Arguments ..
DOUBLE PRECISION A( LDA, * ), B( LDB, * )
* ..
*
* Purpose
* =======
*
* DTZPADCPY copies an array A into an array B. The unchanged part of B
* is padded with zeros. The diagonal of B specified by IOFFD may be set
* to ones.
*
* Arguments
* =========
*
* UPLO (input) CHARACTER*1
* On entry, UPLO specifies which trapezoidal part of the ar-
* ray A is to be copied as follows:
* = 'L' or 'l': Lower triangular part is copied; the
* strictly upper triangular part of B is
* padded with zeros,
* = 'U' or 'u': Upper triangular part is copied; the
* strictly lower triangular part of B is
* padded with zeros.
*
* DIAG (input) CHARACTER*1
* On entry, DIAG specifies whether or not the diagonal of B is
* to be set to ones or not as follows:
*
* DIAG = 'N' or 'n': the diagonals of A are copied into the
* diagonals of B, otherwise the diagonals of B are set to ones.
*
* M (input) INTEGER
* On entry, M specifies the number of rows of the array A. M
* must be at least zero.
*
* N (input) INTEGER
* On entry, N specifies the number of columns of the array A.
* N must be at least zero.
*
* IOFFD (input) INTEGER
* On entry, IOFFD specifies the position of the offdiagonal de-
* limiting the upper and lower trapezoidal part of A as follows
* (see the notes below):
*
* IOFFD = 0 specifies the main diagonal A( i, i ),
* with i = 1 ... MIN( M, N ),
* IOFFD > 0 specifies the subdiagonal A( i+IOFFD, i ),
* with i = 1 ... MIN( M-IOFFD, N ),
* IOFFD < 0 specifies the superdiagonal A( i, i-IOFFD ),
* with i = 1 ... MIN( M, N+IOFFD ).
*
* A (input) DOUBLE PRECISION array
* On entry, A is an array of dimension (LDA,N). Before entry
* with UPLO = 'U', the leading m by n part of the array A must
* contain the upper trapezoidal part of the matrix to be copied
* as specified by IOFFD, UPLO and DIAG, and the strictly lower
* trapezoidal part of A is not referenced; When UPLO = 'L',the
* leading m by n part of the array A must contain the lower
* trapezoidal part of the matrix to be copied as specified by
* IOFFD, UPLO and DIAG and the strictly upper trapezoidal part
* of A is not referenced.
*
* LDA (input) INTEGER
* On entry, LDA specifies the leading dimension of the array A.
* LDA must be at least max( 1, M ).
*
* B (output) DOUBLE PRECISION array
* On entry, B is an array of dimension (LDB,N). On exit, this
* array contains the padded copy of A as specified by IOFFD,
* UPLO and DIAG.
*
* LDB (input) INTEGER
* On entry, LDB specifies the leading dimension of the array B.
* LDB must be at least max( 1, M ).
*
* Notes
* =====
* N N
* ---------------------------- -----------
* | d | | |
* M | d 'U' | | 'U' |
* | 'L' 'D' | |d |
* | d | M | d |
* ---------------------------- | 'D' |
* | d |
* IOFFD < 0 | 'L' d |
* | d|
* N | |
* ----------- -----------
* | d 'U'|
* | d | IOFFD > 0
* M | 'D' |
* | d| N
* | 'L' | ----------------------------
* | | | 'U' |
* | | |d |
* | | | 'D' |
* | | | d |
* | | |'L' d |
* ----------- ----------------------------
*
* -- Written on April 1, 1998 by
* Antoine Petitet, University of Tennessee, Knoxville 37996, USA.
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ONE, ZERO
PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
* ..
* .. Local Scalars ..
INTEGER I, ITMP, J, JTMP, MN
* ..
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX, MIN
* .. Executable Statements ..
*
* Quick return if possible
*
IF( M.LE.0 .OR. N.LE.0 )
$ RETURN
*
* Start the operations
*
IF( LSAME( UPLO, 'L' ) ) THEN
*
MN = MAX( 0, -IOFFD )
DO 20 J = 1, MIN( MN, N )
DO 10 I = 1, M
B( I, J ) = A( I, J )
10 CONTINUE
20 CONTINUE
*
JTMP = MIN( M - IOFFD, N )
*
IF( LSAME( DIAG, 'N' ) ) THEN
DO 50 J = MN + 1, JTMP
ITMP = J + IOFFD
DO 30 I = 1, ITMP - 1
B( I, J ) = ZERO
30 CONTINUE
DO 40 I = ITMP, M
B( I, J ) = A( I, J )
40 CONTINUE
50 CONTINUE
ELSE
DO 80 J = MN + 1, JTMP
ITMP = J + IOFFD
DO 60 I = 1, ITMP - 1
B( I, J ) = ZERO
60 CONTINUE
B( ITMP, J ) = ONE
DO 70 I = ITMP + 1, M
B( I, J ) = A( I, J )
70 CONTINUE
80 CONTINUE
END IF
*
DO 100 J = JTMP + 1, N
DO 90 I = 1, M
B( I, J ) = ZERO
90 CONTINUE
100 CONTINUE
*
ELSE IF( LSAME( UPLO, 'U' ) ) THEN
*
JTMP = MAX( 0, -IOFFD )
*
DO 120 J = 1, JTMP
DO 110 I = 1, M
B( I, J ) = ZERO
110 CONTINUE
120 CONTINUE
*
MN = MIN( M - IOFFD, N )
*
IF( LSAME( DIAG, 'N' ) ) THEN
DO 150 J = JTMP + 1, MN
ITMP = J + IOFFD
DO 130 I = 1, ITMP
B( I, J ) = A( I, J )
130 CONTINUE
DO 140 I = ITMP + 1, M
B( I, J ) = ZERO
140 CONTINUE
150 CONTINUE
ELSE
DO 180 J = JTMP + 1, MN
ITMP = J + IOFFD
DO 160 I = 1, ITMP - 1
B( I, J ) = A( I, J )
160 CONTINUE
B( ITMP, J ) = ONE
DO 170 I = ITMP + 1, M
B( I, J ) = ZERO
170 CONTINUE
180 CONTINUE
END IF
*
DO 200 J = MAX( 0, MN ) + 1, N
DO 190 I = 1, M
B( I, J ) = A( I, J )
190 CONTINUE
200 CONTINUE
*
ELSE
*
DO 220 J = 1, N
DO 210 I = 1, M
B( I, J ) = A( I, J )
210 CONTINUE
220 CONTINUE
*
END IF
*
RETURN
*
* End of DTZPADCPY
*
END
|