1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637
|
PROGRAM PDBLA3TIM
*
* -- PBLAS timing driver (version 2.0) --
* University of Tennessee, Knoxville, Oak Ridge National Laboratory,
* and University of California, Berkeley.
* April 1, 1998
*
* Purpose
* =======
*
* PDBLA3TIM is the main timing program for the Level 3 PBLAS routines.
*
* The program must be driven by a short data file. An annotated exam-
* ple of a data file can be obtained by deleting the first 3 characters
* from the following 56 lines:
* 'Level 3 PBLAS, Timing input file'
* 'Intel iPSC/860 hypercube, gamma model.'
* 'PDBLAS3TIM.SUMM' output file name (if any)
* 6 device out
* 10 value of the logical computational blocksize NB
* 1 number of process grids (ordered pairs of P & Q)
* 2 2 1 4 2 3 8 values of P
* 2 2 4 1 3 2 1 values of Q
* 1.0D0 value of ALPHA
* 1.0D0 value of BETA
* 2 number of tests problems
* 'N' 'U' values of DIAG
* 'L' 'R' values of SIDE
* 'N' 'T' values of TRANSA
* 'N' 'T' values of TRANSB
* 'U' 'L' values of UPLO
* 3 4 values of M
* 3 4 values of N
* 3 4 values of K
* 6 10 values of M_A
* 6 10 values of N_A
* 2 5 values of IMB_A
* 2 5 values of INB_A
* 2 5 values of MB_A
* 2 5 values of NB_A
* 0 1 values of RSRC_A
* 0 0 values of CSRC_A
* 1 1 values of IA
* 1 1 values of JA
* 6 10 values of M_B
* 6 10 values of N_B
* 2 5 values of IMB_B
* 2 5 values of INB_B
* 2 5 values of MB_B
* 2 5 values of NB_B
* 0 1 values of RSRC_B
* 0 0 values of CSRC_B
* 1 1 values of IB
* 1 1 values of JB
* 6 10 values of M_C
* 6 10 values of N_C
* 2 5 values of IMB_C
* 2 5 values of INB_C
* 2 5 values of MB_C
* 2 5 values of NB_C
* 0 1 values of RSRC_C
* 0 0 values of CSRC_C
* 1 1 values of IC
* 1 1 values of JC
* PDGEMM T put F for no test in the same column
* PDSYMM T put F for no test in the same column
* PDSYRK T put F for no test in the same column
* PDSYR2K T put F for no test in the same column
* PDTRMM T put F for no test in the same column
* PDTRSM T put F for no test in the same column
* PDGEADD T put F for no test in the same column
* PDTRADD T put F for no test in the same column
*
* Internal Parameters
* ===================
*
* TOTMEM INTEGER
* TOTMEM is a machine-specific parameter indicating the maxi-
* mum amount of available memory per process in bytes. The
* user should customize TOTMEM to his platform. Remember to
* leave room in memory for the operating system, the BLACS
* buffer, etc. For example, on a system with 8 MB of memory
* per process (e.g., one processor on an Intel iPSC/860), the
* parameters we use are TOTMEM=6200000 (leaving 1.8 MB for OS,
* code, BLACS buffer, etc). However, for PVM, we usually set
* TOTMEM = 2000000. Some experimenting with the maximum value
* of TOTMEM may be required. By default, TOTMEM is 2000000.
*
* DBLESZ INTEGER
* DBLESZ indicates the length in bytes on the given platform
* for a double precision real. By default, DBLESZ is set to
* eight.
*
* MEM DOUBLE PRECISION array
* MEM is an array of dimension TOTMEM / DBLESZ.
* All arrays used by SCALAPACK routines are allocated from this
* array MEM and referenced by pointers. The integer IPA, for
* example, is a pointer to the starting element of MEM for the
* matrix A.
*
* -- Written on April 1, 1998 by
* Antoine Petitet, University of Tennessee, Knoxville 37996, USA.
*
* =====================================================================
*
* .. Parameters ..
INTEGER MAXTESTS, MAXGRIDS, DBLESZ, TOTMEM, MEMSIZ,
$ NSUBS
DOUBLE PRECISION ONE
PARAMETER ( MAXTESTS = 20, MAXGRIDS = 20, DBLESZ = 8,
$ ONE = 1.0D+0, TOTMEM = 2000000, NSUBS = 8,
$ MEMSIZ = TOTMEM / DBLESZ )
INTEGER BLOCK_CYCLIC_2D_INB, CSRC_, CTXT_, DLEN_,
$ DTYPE_, IMB_, INB_, LLD_, MB_, M_, NB_, N_,
$ RSRC_
PARAMETER ( BLOCK_CYCLIC_2D_INB = 2, DLEN_ = 11,
$ DTYPE_ = 1, CTXT_ = 2, M_ = 3, N_ = 4,
$ IMB_ = 5, INB_ = 6, MB_ = 7, NB_ = 8,
$ RSRC_ = 9, CSRC_ = 10, LLD_ = 11 )
* ..
* .. Local Scalars ..
CHARACTER*1 ADIAGDO, AFORM, CFORM, DIAG, SIDE, TRANSA,
$ TRANSB, UPLO
INTEGER CSRCA, CSRCB, CSRCC, I, IA, IAM, IASEED, IB,
$ IBSEED, IC, ICSEED, ICTXT, IMBA, IMBB, IMBC,
$ IMIDA, IMIDB, IMIDC, INBA, INBB, INBC, IPA,
$ IPB, IPC, IPOSTA, IPOSTB, IPOSTC, IPREA, IPREB,
$ IPREC, J, JA, JB, JC, K, L, M, MA, MB, MBA,
$ MBB, MBC, MC, MEMREQD, MPA, MPB, MPC, MYCOL,
$ MYROW, N, NA, NB, NBA, NBB, NBC, NC, NCOLA,
$ NCOLB, NCOLC, NGRIDS, NOUT, NPCOL, NPROCS,
$ NPROW, NQA, NQB, NQC, NROWA, NROWB, NROWC,
$ NTESTS, OFFDA, OFFDC, RSRCA, RSRCB, RSRCC
DOUBLE PRECISION ALPHA, BETA, CFLOPS, NOPS, SCALE, WFLOPS
* ..
* .. Local Arrays ..
LOGICAL LTEST( NSUBS ), BCHECK( NSUBS ),
$ CCHECK( NSUBS )
CHARACTER*1 DIAGVAL( MAXTESTS ), SIDEVAL( MAXTESTS ),
$ TRNAVAL( MAXTESTS ), TRNBVAL( MAXTESTS ),
$ UPLOVAL( MAXTESTS )
CHARACTER*80 OUTFILE
INTEGER CSCAVAL( MAXTESTS ), CSCBVAL( MAXTESTS ),
$ CSCCVAL( MAXTESTS ), DESCA( DLEN_ ),
$ DESCB( DLEN_ ), DESCC( DLEN_ ),
$ IAVAL( MAXTESTS ), IBVAL( MAXTESTS ),
$ ICVAL( MAXTESTS ), IERR( 3 ),
$ IMBAVAL( MAXTESTS ), IMBBVAL( MAXTESTS ),
$ IMBCVAL( MAXTESTS ), INBAVAL( MAXTESTS ),
$ INBBVAL( MAXTESTS ), INBCVAL( MAXTESTS ),
$ JAVAL( MAXTESTS ), JBVAL( MAXTESTS ),
$ JCVAL( MAXTESTS ), KVAL( MAXTESTS ),
$ MAVAL( MAXTESTS ), MBAVAL( MAXTESTS ),
$ MBBVAL( MAXTESTS ), MBCVAL( MAXTESTS ),
$ MBVAL( MAXTESTS ), MCVAL( MAXTESTS ),
$ MVAL( MAXTESTS ), NAVAL( MAXTESTS ),
$ NBAVAL( MAXTESTS ), NBBVAL( MAXTESTS ),
$ NBCVAL( MAXTESTS ), NBVAL( MAXTESTS ),
$ NCVAL( MAXTESTS ), NVAL( MAXTESTS ),
$ PVAL( MAXTESTS ), QVAL( MAXTESTS ),
$ RSCAVAL( MAXTESTS ), RSCBVAL( MAXTESTS ),
$ RSCCVAL( MAXTESTS )
DOUBLE PRECISION CTIME( 1 ), MEM( MEMSIZ ), WTIME( 1 )
* ..
* .. External Subroutines ..
EXTERNAL BLACS_BARRIER, BLACS_EXIT, BLACS_GET,
$ BLACS_GRIDEXIT, BLACS_GRIDINFO, BLACS_GRIDINIT,
$ BLACS_PINFO, IGSUM2D, PB_BOOT, PB_COMBINE,
$ PB_TIMER, PDBLA3TIMINFO, PDGEADD, PDGEMM,
$ PDLAGEN, PDLASCAL, PDSYMM, PDSYR2K, PDSYRK,
$ PDTRADD, PDTRMM, PDTRSM, PMDESCCHK, PMDIMCHK
* ..
* .. External Functions ..
LOGICAL LSAME
DOUBLE PRECISION PDOPBL3
EXTERNAL LSAME, PDOPBL3
* ..
* .. Intrinsic Functions ..
INTRINSIC DBLE, MAX
* ..
* .. Common Blocks ..
CHARACTER*7 SNAMES( NSUBS )
LOGICAL ABRTFLG
INTEGER INFO, NBLOG
COMMON /SNAMEC/SNAMES
COMMON /INFOC/INFO, NBLOG
COMMON /PBERRORC/NOUT, ABRTFLG
* ..
* .. Data Statements ..
DATA SNAMES/'PDGEMM ', 'PDSYMM ', 'PDSYRK ',
$ 'PDSYR2K', 'PDTRMM ', 'PDTRSM ',
$ 'PDGEADD', 'PDTRADD'/
DATA BCHECK/.TRUE., .TRUE., .FALSE., .TRUE., .TRUE.,
$ .TRUE., .FALSE., .FALSE./
DATA CCHECK/.TRUE., .TRUE., .TRUE., .TRUE., .FALSE.,
$ .FALSE., .TRUE., .TRUE./
* ..
* .. Executable Statements ..
*
* Initialization
*
* Set flag so that the PBLAS error handler won't abort on errors, so
* that the tester will detect unsupported operations.
*
ABRTFLG = .FALSE.
*
* Seeds for random matrix generations.
*
IASEED = 100
IBSEED = 200
ICSEED = 300
*
* Get starting information
*
CALL BLACS_PINFO( IAM, NPROCS )
CALL PDBLA3TIMINFO( OUTFILE, NOUT, NTESTS, DIAGVAL, SIDEVAL,
$ TRNAVAL, TRNBVAL, UPLOVAL, MVAL, NVAL,
$ KVAL, MAVAL, NAVAL, IMBAVAL, MBAVAL,
$ INBAVAL, NBAVAL, RSCAVAL, CSCAVAL, IAVAL,
$ JAVAL, MBVAL, NBVAL, IMBBVAL, MBBVAL,
$ INBBVAL, NBBVAL, RSCBVAL, CSCBVAL, IBVAL,
$ JBVAL, MCVAL, NCVAL, IMBCVAL, MBCVAL,
$ INBCVAL, NBCVAL, RSCCVAL, CSCCVAL, ICVAL,
$ JCVAL, MAXTESTS, NGRIDS, PVAL, MAXGRIDS,
$ QVAL, MAXGRIDS, NBLOG, LTEST, IAM, NPROCS,
$ ALPHA, BETA, MEM )
*
IF( IAM.EQ.0 )
$ WRITE( NOUT, FMT = 9984 )
*
* Loop over different process grids
*
DO 60 I = 1, NGRIDS
*
NPROW = PVAL( I )
NPCOL = QVAL( I )
*
* Make sure grid information is correct
*
IERR( 1 ) = 0
IF( NPROW.LT.1 ) THEN
IF( IAM.EQ.0 )
$ WRITE( NOUT, FMT = 9999 ) 'GRID SIZE', 'NPROW', NPROW
IERR( 1 ) = 1
ELSE IF( NPCOL.LT.1 ) THEN
IF( IAM.EQ.0 )
$ WRITE( NOUT, FMT = 9999 ) 'GRID SIZE', 'NPCOL', NPCOL
IERR( 1 ) = 1
ELSE IF( NPROW*NPCOL.GT.NPROCS ) THEN
IF( IAM.EQ.0 )
$ WRITE( NOUT, FMT = 9998 ) NPROW*NPCOL, NPROCS
IERR( 1 ) = 1
END IF
*
IF( IERR( 1 ).GT.0 ) THEN
IF( IAM.EQ.0 )
$ WRITE( NOUT, FMT = 9997 ) 'GRID'
GO TO 60
END IF
*
* Define process grid
*
CALL BLACS_GET( -1, 0, ICTXT )
CALL BLACS_GRIDINIT( ICTXT, 'Row-major', NPROW, NPCOL )
CALL BLACS_GRIDINFO( ICTXT, NPROW, NPCOL, MYROW, MYCOL )
*
* Go to bottom of process grid loop if this case doesn't use my
* process
*
IF( MYROW.GE.NPROW .OR. MYCOL.GE.NPCOL )
$ GO TO 60
*
* Loop over number of tests
*
DO 50 J = 1, NTESTS
*
* Get the test parameters
*
DIAG = DIAGVAL( J )
SIDE = SIDEVAL( J )
TRANSA = TRNAVAL( J )
TRANSB = TRNBVAL( J )
UPLO = UPLOVAL( J )
*
M = MVAL( J )
N = NVAL( J )
K = KVAL( J )
*
MA = MAVAL( J )
NA = NAVAL( J )
IMBA = IMBAVAL( J )
MBA = MBAVAL( J )
INBA = INBAVAL( J )
NBA = NBAVAL( J )
RSRCA = RSCAVAL( J )
CSRCA = CSCAVAL( J )
IA = IAVAL( J )
JA = JAVAL( J )
*
MB = MBVAL( J )
NB = NBVAL( J )
IMBB = IMBBVAL( J )
MBB = MBBVAL( J )
INBB = INBBVAL( J )
NBB = NBBVAL( J )
RSRCB = RSCBVAL( J )
CSRCB = CSCBVAL( J )
IB = IBVAL( J )
JB = JBVAL( J )
*
MC = MCVAL( J )
NC = NCVAL( J )
IMBC = IMBCVAL( J )
MBC = MBCVAL( J )
INBC = INBCVAL( J )
NBC = NBCVAL( J )
RSRCC = RSCCVAL( J )
CSRCC = CSCCVAL( J )
IC = ICVAL( J )
JC = JCVAL( J )
*
IF( IAM.EQ.0 ) THEN
*
WRITE( NOUT, FMT = * )
WRITE( NOUT, FMT = 9996 ) J, NPROW, NPCOL
WRITE( NOUT, FMT = * )
*
WRITE( NOUT, FMT = 9995 )
WRITE( NOUT, FMT = 9994 )
WRITE( NOUT, FMT = 9995 )
WRITE( NOUT, FMT = 9993 ) M, N, K, SIDE, UPLO, TRANSA,
$ TRANSB, DIAG
*
WRITE( NOUT, FMT = 9995 )
WRITE( NOUT, FMT = 9992 )
WRITE( NOUT, FMT = 9995 )
WRITE( NOUT, FMT = 9991 ) IA, JA, MA, NA, IMBA, INBA,
$ MBA, NBA, RSRCA, CSRCA
*
WRITE( NOUT, FMT = 9995 )
WRITE( NOUT, FMT = 9990 )
WRITE( NOUT, FMT = 9995 )
WRITE( NOUT, FMT = 9991 ) IB, JB, MB, NB, IMBB, INBB,
$ MBB, NBB, RSRCB, CSRCB
*
WRITE( NOUT, FMT = 9995 )
WRITE( NOUT, FMT = 9989 )
WRITE( NOUT, FMT = 9995 )
WRITE( NOUT, FMT = 9991 ) IC, JC, MC, NC, IMBC, INBC,
$ MBC, NBC, RSRCC, CSRCC
*
WRITE( NOUT, FMT = 9995 )
WRITE( NOUT, FMT = 9980 )
*
END IF
*
* Check the validity of the input test parameters
*
IF( .NOT.LSAME( SIDE, 'L' ).AND.
$ .NOT.LSAME( SIDE, 'R' ) ) THEN
IF( IAM.EQ.0 )
$ WRITE( NOUT, FMT = 9997 ) 'SIDE'
GO TO 40
END IF
*
IF( .NOT.LSAME( UPLO, 'U' ).AND.
$ .NOT.LSAME( UPLO, 'L' ) ) THEN
IF( IAM.EQ.0 )
$ WRITE( NOUT, FMT = 9997 ) 'UPLO'
GO TO 40
END IF
*
IF( .NOT.LSAME( TRANSA, 'N' ).AND.
$ .NOT.LSAME( TRANSA, 'T' ).AND.
$ .NOT.LSAME( TRANSA, 'C' ) ) THEN
IF( IAM.EQ.0 )
$ WRITE( NOUT, FMT = 9997 ) 'TRANSA'
GO TO 40
END IF
*
IF( .NOT.LSAME( TRANSB, 'N' ).AND.
$ .NOT.LSAME( TRANSB, 'T' ).AND.
$ .NOT.LSAME( TRANSB, 'C' ) ) THEN
IF( IAM.EQ.0 )
$ WRITE( NOUT, FMT = 9997 ) 'TRANSB'
GO TO 40
END IF
*
IF( .NOT.LSAME( DIAG , 'U' ).AND.
$ .NOT.LSAME( DIAG , 'N' ) )THEN
IF( IAM.EQ.0 )
$ WRITE( NOUT, FMT = 9997 ) 'DIAG'
GO TO 40
END IF
*
* Check and initialize the matrix descriptors
*
CALL PMDESCCHK( ICTXT, NOUT, 'A', DESCA,
$ BLOCK_CYCLIC_2D_INB, MA, NA, IMBA, INBA,
$ MBA, NBA, RSRCA, CSRCA, MPA, NQA, IPREA,
$ IMIDA, IPOSTA, 0, 0, IERR( 1 ) )
*
CALL PMDESCCHK( ICTXT, NOUT, 'B', DESCB,
$ BLOCK_CYCLIC_2D_INB, MB, NB, IMBB, INBB,
$ MBB, NBB, RSRCB, CSRCB, MPB, NQB, IPREB,
$ IMIDB, IPOSTB, 0, 0, IERR( 2 ) )
*
CALL PMDESCCHK( ICTXT, NOUT, 'C', DESCC,
$ BLOCK_CYCLIC_2D_INB, MC, NC, IMBC, INBC,
$ MBC, NBC, RSRCC, CSRCC, MPC, NQC, IPREC,
$ IMIDC, IPOSTC, 0, 0, IERR( 3 ) )
*
IF( IERR( 1 ).GT.0 .OR. IERR( 2 ).GT.0 .OR.
$ IERR( 3 ).GT.0 ) THEN
GO TO 40
END IF
*
* Assign pointers into MEM for matrices corresponding to
* the distributed matrices A, X and Y.
*
IPA = IPREA + 1
IPB = IPA + DESCA( LLD_ )*NQA
IPC = IPB + DESCB( LLD_ )*NQB
*
* Check if sufficient memory.
*
MEMREQD = IPC + DESCC( LLD_ )*NQC - 1
IERR( 1 ) = 0
IF( MEMREQD.GT.MEMSIZ ) THEN
IF( IAM.EQ.0 )
$ WRITE( NOUT, FMT = 9987 ) MEMREQD*DBLESZ
IERR( 1 ) = 1
END IF
*
* Check all processes for an error
*
CALL IGSUM2D( ICTXT, 'All', ' ', 1, 1, IERR, 1, -1, 0 )
*
IF( IERR( 1 ).GT.0 ) THEN
IF( IAM.EQ.0 )
$ WRITE( NOUT, FMT = 9988 )
GO TO 40
END IF
*
* Loop over all PBLAS 3 routines
*
DO 30 L = 1, NSUBS
*
* Continue only if this subroutine has to be tested.
*
IF( .NOT.LTEST( L ) )
$ GO TO 30
*
* Define the size of the operands
*
IF( L.EQ.1 ) THEN
*
* PDGEMM
*
NROWC = M
NCOLC = N
IF( LSAME( TRANSA, 'N' ) ) THEN
NROWA = M
NCOLA = K
ELSE
NROWA = K
NCOLA = M
END IF
IF( LSAME( TRANSB, 'N' ) ) THEN
NROWB = K
NCOLB = N
ELSE
NROWB = N
NCOLB = K
END IF
ELSE IF( L.EQ.2 ) THEN
*
* PDSYMM
*
NROWC = M
NCOLC = N
NROWB = M
NCOLB = N
IF( LSAME( SIDE, 'L' ) ) THEN
NROWA = M
NCOLA = M
ELSE
NROWA = N
NCOLA = N
END IF
ELSE IF( L.EQ.3 ) THEN
*
* PDSYRK
*
NROWC = N
NCOLC = N
IF( LSAME( TRANSA, 'N' ) ) THEN
NROWA = N
NCOLA = K
ELSE
NROWA = K
NCOLA = N
END IF
NROWB = 0
NCOLB = 0
ELSE IF( L.EQ.4 ) THEN
*
* PDSYR2K
*
NROWC = N
NCOLC = N
IF( LSAME( TRANSA, 'N' ) ) THEN
NROWA = N
NCOLA = K
NROWB = N
NCOLB = K
ELSE
NROWA = K
NCOLA = N
NROWB = K
NCOLB = N
END IF
ELSE IF( L.EQ.5 .OR. L.EQ.6 ) THEN
*
* PDTRMM, PDTRSM
*
NROWB = M
NCOLB = N
IF( LSAME( SIDE, 'L' ) ) THEN
NROWA = M
NCOLA = M
ELSE
NROWA = N
NCOLA = N
END IF
NROWC = 0
NCOLC = 0
ELSE IF( L.EQ.7 .OR. L.EQ.8 ) THEN
*
* PDGEADD, PDTRADD
*
IF( LSAME( TRANSA, 'N' ) ) THEN
NROWA = M
NCOLA = N
ELSE
NROWA = N
NCOLA = M
END IF
NROWC = M
NCOLC = N
NROWB = 0
NCOLB = 0
*
END IF
*
* Check the validity of the operand sizes
*
CALL PMDIMCHK( ICTXT, NOUT, NROWA, NCOLA, 'A', IA, JA,
$ DESCA, IERR( 1 ) )
CALL PMDIMCHK( ICTXT, NOUT, NROWB, NCOLB, 'B', IB, JB,
$ DESCB, IERR( 2 ) )
CALL PMDIMCHK( ICTXT, NOUT, NROWC, NCOLC, 'C', IC, JC,
$ DESCC, IERR( 3 ) )
*
IF( IERR( 1 ).NE.0 .OR. IERR( 2 ).NE.0 .OR.
$ IERR( 3 ).NE.0 ) THEN
GO TO 30
END IF
*
* Generate distributed matrices A, B and C
*
IF( L.EQ.2 ) THEN
*
* PDSYMM
*
AFORM = 'S'
ADIAGDO = 'N'
OFFDA = IA - JA
CFORM = 'N'
OFFDC = 0
*
ELSE IF( L.EQ.3 .OR. L.EQ.4 ) THEN
*
* PDSYRK, PDSYR2K
*
AFORM = 'N'
ADIAGDO = 'N'
OFFDA = 0
CFORM = 'S'
OFFDC = IC - JC
*
ELSE IF( ( L.EQ.6 ).AND.( LSAME( DIAG, 'N' ) ) ) THEN
*
* PDTRSM
*
AFORM = 'N'
ADIAGDO = 'D'
OFFDA = IA - JA
CFORM = 'N'
OFFDC = 0
*
ELSE
*
* Default values
*
AFORM = 'N'
ADIAGDO = 'N'
OFFDA = 0
CFORM = 'N'
OFFDC = 0
*
END IF
*
CALL PDLAGEN( .FALSE., AFORM, ADIAGDO, OFFDA, MA, NA,
$ 1, 1, DESCA, IASEED, MEM( IPA ),
$ DESCA( LLD_ ) )
IF( ( L.EQ.6 ).AND.( .NOT.( LSAME( DIAG, 'N' ) ) ).AND.
$ ( MAX( NROWA, NCOLA ).GT.1 ) ) THEN
SCALE = ONE / DBLE( MAX( NROWA, NCOLA ) )
IF( LSAME( UPLO, 'L' ) ) THEN
CALL PDLASCAL( 'Lower', NROWA-1, NCOLA-1, SCALE,
$ MEM( IPA ), IA+1, JA, DESCA )
ELSE
CALL PDLASCAL( 'Upper', NROWA-1, NCOLA-1, SCALE,
$ MEM( IPA ), IA, JA+1, DESCA )
END IF
*
END IF
*
IF( BCHECK( L ) )
$ CALL PDLAGEN( .FALSE., 'None', 'No diag', 0, MB, NB,
$ 1, 1, DESCB, IBSEED, MEM( IPB ),
$ DESCB( LLD_ ) )
*
IF( CCHECK( L ) )
$ CALL PDLAGEN( .FALSE., CFORM, 'No diag', OFFDC, MC,
$ NC, 1, 1, DESCC, ICSEED, MEM( IPC ),
$ DESCC( LLD_ ) )
*
INFO = 0
CALL PB_BOOT()
CALL BLACS_BARRIER( ICTXT, 'All' )
*
* Call the Level 3 PBLAS routine
*
IF( L.EQ.1 ) THEN
*
* Test PDGEMM
*
NOPS = PDOPBL3( SNAMES( L ), M, N, K )
*
CALL PB_TIMER( 1 )
CALL PDGEMM( TRANSA, TRANSB, M, N, K, ALPHA,
$ MEM( IPA ), IA, JA, DESCA, MEM( IPB ),
$ IB, JB, DESCB, BETA, MEM( IPC ), IC, JC,
$ DESCC )
CALL PB_TIMER( 1 )
*
ELSE IF( L.EQ.2 ) THEN
*
* Test PDSYMM
*
IF( LSAME( SIDE, 'L' ) ) THEN
NOPS = PDOPBL3( SNAMES( L ), M, N, 0 )
ELSE
NOPS = PDOPBL3( SNAMES( L ), M, N, 1 )
END IF
*
CALL PB_TIMER( 1 )
CALL PDSYMM( SIDE, UPLO, M, N, ALPHA, MEM( IPA ), IA,
$ JA, DESCA, MEM( IPB ), IB, JB, DESCB,
$ BETA, MEM( IPC ), IC, JC, DESCC )
CALL PB_TIMER( 1 )
*
ELSE IF( L.EQ.3 ) THEN
*
* Test PDSYRK
*
NOPS = PDOPBL3( SNAMES( L ), N, N, K )
*
CALL PB_TIMER( 1 )
CALL PDSYRK( UPLO, TRANSA, N, K, ALPHA, MEM( IPA ),
$ IA, JA, DESCA, BETA, MEM( IPC ), IC, JC,
$ DESCC )
CALL PB_TIMER( 1 )
*
ELSE IF( L.EQ.4 ) THEN
*
* Test PDSYR2K
*
NOPS = PDOPBL3( SNAMES( L ), N, N, K )
*
CALL PB_TIMER( 1 )
CALL PDSYR2K( UPLO, TRANSA, N, K, ALPHA, MEM( IPA ),
$ IA, JA, DESCA, MEM( IPB ), IB, JB,
$ DESCB, BETA, MEM( IPC ), IC, JC,
$ DESCC )
CALL PB_TIMER( 1 )
*
ELSE IF( L.EQ.5 ) THEN
*
* Test PDTRMM
*
IF( LSAME( SIDE, 'L' ) ) THEN
NOPS = PDOPBL3( SNAMES( L ), M, N, 0 )
ELSE
NOPS = PDOPBL3( SNAMES( L ), M, N, 1 )
END IF
*
CALL PB_TIMER( 1 )
CALL PDTRMM( SIDE, UPLO, TRANSA, DIAG, M, N, ALPHA,
$ MEM( IPA ), IA, JA, DESCA, MEM( IPB ),
$ IB, JB, DESCB )
CALL PB_TIMER( 1 )
*
ELSE IF( L.EQ.6 ) THEN
*
* Test PDTRSM
*
IF( LSAME( SIDE, 'L' ) ) THEN
NOPS = PDOPBL3( SNAMES( L ), M, N, 0 )
ELSE
NOPS = PDOPBL3( SNAMES( L ), M, N, 1 )
END IF
*
CALL PB_TIMER( 1 )
CALL PDTRSM( SIDE, UPLO, TRANSA, DIAG, M, N, ALPHA,
$ MEM( IPA ), IA, JA, DESCA, MEM( IPB ),
$ IB, JB, DESCB )
CALL PB_TIMER( 1 )
*
ELSE IF( L.EQ.7 ) THEN
*
* Test PDGEADD
*
NOPS = PDOPBL3( SNAMES( L ), M, N, M )
*
CALL PB_TIMER( 1 )
CALL PDGEADD( TRANSA, M, N, ALPHA, MEM( IPA ), IA, JA,
$ DESCA, BETA, MEM( IPC ), IC, JC, DESCC )
CALL PB_TIMER( 1 )
*
ELSE IF( L.EQ.8 ) THEN
*
* Test PDTRADD
*
IF( LSAME( UPLO, 'U' ) ) THEN
NOPS = PDOPBL3( SNAMES( L ), M, N, 0 )
ELSE
NOPS = PDOPBL3( SNAMES( L ), M, N, 1 )
END IF
*
CALL PB_TIMER( 1 )
CALL PDTRADD( UPLO, TRANSA, M, N, ALPHA, MEM( IPA ),
$ IA, JA, DESCA, BETA, MEM( IPC ), IC, JC,
$ DESCC )
CALL PB_TIMER( 1 )
*
END IF
*
* Check if the operation has been performed.
*
IF( INFO.NE.0 ) THEN
IF( IAM.EQ.0 )
$ WRITE( NOUT, FMT = 9982 ) INFO
GO TO 30
END IF
*
CALL PB_COMBINE( ICTXT, 'All', '>', 'W', 1, 1, WTIME )
CALL PB_COMBINE( ICTXT, 'All', '>', 'C', 1, 1, CTIME )
*
* Only node 0 prints timing test result
*
IF( IAM.EQ.0 ) THEN
*
* Print WALL time if machine supports it
*
IF( WTIME( 1 ).GT.0.0D+0 ) THEN
WFLOPS = NOPS / ( WTIME( 1 ) * 1.0D+6 )
ELSE
WFLOPS = 0.0D+0
END IF
*
* Print CPU time if machine supports it
*
IF( CTIME( 1 ).GT.0.0D+0 ) THEN
CFLOPS = NOPS / ( CTIME( 1 ) * 1.0D+6 )
ELSE
CFLOPS = 0.0D+0
END IF
*
WRITE( NOUT, FMT = 9981 ) SNAMES( L ), WTIME( 1 ),
$ WFLOPS, CTIME( 1 ), CFLOPS
*
END IF
*
30 CONTINUE
*
40 IF( IAM.EQ.0 ) THEN
WRITE( NOUT, FMT = 9995 )
WRITE( NOUT, FMT = * )
WRITE( NOUT, FMT = 9986 ) J
END IF
*
50 CONTINUE
*
CALL BLACS_GRIDEXIT( ICTXT )
*
60 CONTINUE
*
IF( IAM.EQ.0 ) THEN
WRITE( NOUT, FMT = * )
WRITE( NOUT, FMT = 9985 )
WRITE( NOUT, FMT = * )
END IF
*
CALL BLACS_EXIT( 0 )
*
9999 FORMAT( 'ILLEGAL ', A, ': ', A, ' = ', I10,
$ ' should be at least 1' )
9998 FORMAT( 'ILLEGAL GRID: NPROW*NPCOL = ', I4,
$ '. It can be at most', I4 )
9997 FORMAT( 'Bad ', A, ' parameters: going on to next test case.' )
9996 FORMAT( 2X, 'Test number ', I2 , ' started on a ', I4, ' x ',
$ I4, ' process grid.' )
9995 FORMAT( 2X, ' ------------------------------------------------',
$ '-------------------' )
9994 FORMAT( 2X, ' M N K SIDE UPLO TRANSA ',
$ 'TRANSB DIAG' )
9993 FORMAT( 5X,I6,1X,I6,1X,I6,6X,A1,5X,A1,7X,A1,7X,A1,5X,A1 )
9992 FORMAT( 2X, ' IA JA MA NA IMBA INBA',
$ ' MBA NBA RSRCA CSRCA' )
9991 FORMAT( 5X,I6,1X,I6,1X,I6,1X,I6,1X,I6,1X,I6,1X,I6,1X,I6,
$ 1X,I5,1X,I5 )
9990 FORMAT( 2X, ' IB JB MB NB IMBB INBB',
$ ' MBB NBB RSRCB CSRCB' )
9989 FORMAT( 2X, ' IC JC MC NC IMBC INBC',
$ ' MBC NBC RSRCC CSRCC' )
9988 FORMAT( 'Not enough memory for this test: going on to',
$ ' next test case.' )
9987 FORMAT( 'Not enough memory. Need: ', I12 )
9986 FORMAT( 2X, 'Test number ', I2, ' completed.' )
9985 FORMAT( 2X, 'End of Tests.' )
9984 FORMAT( 2X, 'Tests started.' )
9983 FORMAT( 5X, A, ' ***** ', A, ' has an incorrect value: ',
$ ' BYPASS *****' )
9982 FORMAT( 2X, ' ***** Operation not supported, error code: ',
$ I5, ' *****' )
9981 FORMAT( 2X, '| ', A, 2X, F13.3, 2X, F13.3, 2X, F13.3, 2X, F13.3 )
9980 FORMAT( 2X, ' WALL time (s) WALL Mflops ',
$ ' CPU time (s) CPU Mflops' )
*
STOP
*
* End of PDBLA3TIM
*
END
SUBROUTINE PDBLA3TIMINFO( SUMMRY, NOUT, NMAT, DIAGVAL, SIDEVAL,
$ TRNAVAL, TRNBVAL, UPLOVAL, MVAL,
$ NVAL, KVAL, MAVAL, NAVAL, IMBAVAL,
$ MBAVAL, INBAVAL, NBAVAL, RSCAVAL,
$ CSCAVAL, IAVAL, JAVAL, MBVAL, NBVAL,
$ IMBBVAL, MBBVAL, INBBVAL, NBBVAL,
$ RSCBVAL, CSCBVAL, IBVAL, JBVAL,
$ MCVAL, NCVAL, IMBCVAL, MBCVAL,
$ INBCVAL, NBCVAL, RSCCVAL, CSCCVAL,
$ ICVAL, JCVAL, LDVAL, NGRIDS, PVAL,
$ LDPVAL, QVAL, LDQVAL, NBLOG, LTEST,
$ IAM, NPROCS, ALPHA, BETA, WORK )
*
* -- PBLAS test routine (version 2.0) --
* University of Tennessee, Knoxville, Oak Ridge National Laboratory,
* and University of California, Berkeley.
* April 1, 1998
*
* .. Scalar Arguments ..
INTEGER IAM, LDPVAL, LDQVAL, LDVAL, NBLOG, NGRIDS,
$ NMAT, NOUT, NPROCS
DOUBLE PRECISION ALPHA, BETA
* ..
* .. Array Arguments ..
CHARACTER*( * ) SUMMRY
CHARACTER*1 DIAGVAL( LDVAL ), SIDEVAL( LDVAL ),
$ TRNAVAL( LDVAL ), TRNBVAL( LDVAL ),
$ UPLOVAL( LDVAL )
LOGICAL LTEST( * )
INTEGER CSCAVAL( LDVAL ), CSCBVAL( LDVAL ),
$ CSCCVAL( LDVAL ), IAVAL( LDVAL ),
$ IBVAL( LDVAL ), ICVAL( LDVAL ),
$ IMBAVAL( LDVAL ), IMBBVAL( LDVAL ),
$ IMBCVAL( LDVAL ), INBAVAL( LDVAL ),
$ INBBVAL( LDVAL ), INBCVAL( LDVAL ),
$ JAVAL( LDVAL ), JBVAL( LDVAL ), JCVAL( LDVAL ),
$ KVAL( LDVAL ), MAVAL( LDVAL ), MBAVAL( LDVAL ),
$ MBBVAL( LDVAL ), MBCVAL( LDVAL ),
$ MBVAL( LDVAL ), MCVAL( LDVAL ), MVAL( LDVAL ),
$ NAVAL( LDVAL ), NBAVAL( LDVAL ),
$ NBBVAL( LDVAL ), NBCVAL( LDVAL ),
$ NBVAL( LDVAL ), NCVAL( LDVAL ), NVAL( LDVAL ),
$ PVAL( LDPVAL ), QVAL( LDQVAL ),
$ RSCAVAL( LDVAL ), RSCBVAL( LDVAL ),
$ RSCCVAL( LDVAL ), WORK( * )
* ..
*
* Purpose
* =======
*
* PDBLA3TIMINFO get the needed startup information for timing various
* Level 3 PBLAS routines, and transmits it to all processes.
*
* Notes
* =====
*
* For packing the information we assumed that the length in bytes of an
* integer is equal to the length in bytes of a real single precision.
*
* Arguments
* =========
*
* SUMMRY (global output) CHARACTER*(*)
* On exit, SUMMRY is the name of output (summary) file (if
* any). SUMMRY is only defined for process 0.
*
* NOUT (global output) INTEGER
* On exit, NOUT specifies the unit number for the output file.
* When NOUT is 6, output to screen, when NOUT is 0, output to
* stderr. NOUT is only defined for process 0.
*
* NMAT (global output) INTEGER
* On exit, NMAT specifies the number of different test cases.
*
* DIAGVAL (global output) CHARACTER array
* On entry, DIAGVAL is an array of dimension LDVAL. On exit,
* this array contains the values of DIAG to run the code with.
*
* SIDEVAL (global output) CHARACTER array
* On entry, SIDEVAL is an array of dimension LDVAL. On exit,
* this array contains the values of SIDE to run the code with.
*
* TRNAVAL (global output) CHARACTER array
* On entry, TRNAVAL is an array of dimension LDVAL. On exit,
* this array contains the values of TRANSA to run the code
* with.
*
* TRNBVAL (global output) CHARACTER array
* On entry, TRNBVAL is an array of dimension LDVAL. On exit,
* this array contains the values of TRANSB to run the code
* with.
*
* UPLOVAL (global output) CHARACTER array
* On entry, UPLOVAL is an array of dimension LDVAL. On exit,
* this array contains the values of UPLO to run the code with.
*
* MVAL (global output) INTEGER array
* On entry, MVAL is an array of dimension LDVAL. On exit, this
* array contains the values of M to run the code with.
*
* NVAL (global output) INTEGER array
* On entry, NVAL is an array of dimension LDVAL. On exit, this
* array contains the values of N to run the code with.
*
* KVAL (global output) INTEGER array
* On entry, KVAL is an array of dimension LDVAL. On exit, this
* array contains the values of K to run the code with.
*
* MAVAL (global output) INTEGER array
* On entry, MAVAL is an array of dimension LDVAL. On exit, this
* array contains the values of DESCA( M_ ) to run the code
* with.
*
* NAVAL (global output) INTEGER array
* On entry, NAVAL is an array of dimension LDVAL. On exit, this
* array contains the values of DESCA( N_ ) to run the code
* with.
*
* IMBAVAL (global output) INTEGER array
* On entry, IMBAVAL is an array of dimension LDVAL. On exit,
* this array contains the values of DESCA( IMB_ ) to run the
* code with.
*
* MBAVAL (global output) INTEGER array
* On entry, MBAVAL is an array of dimension LDVAL. On exit,
* this array contains the values of DESCA( MB_ ) to run the
* code with.
*
* INBAVAL (global output) INTEGER array
* On entry, INBAVAL is an array of dimension LDVAL. On exit,
* this array contains the values of DESCA( INB_ ) to run the
* code with.
*
* NBAVAL (global output) INTEGER array
* On entry, NBAVAL is an array of dimension LDVAL. On exit,
* this array contains the values of DESCA( NB_ ) to run the
* code with.
*
* RSCAVAL (global output) INTEGER array
* On entry, RSCAVAL is an array of dimension LDVAL. On exit,
* this array contains the values of DESCA( RSRC_ ) to run the
* code with.
*
* CSCAVAL (global output) INTEGER array
* On entry, CSCAVAL is an array of dimension LDVAL. On exit,
* this array contains the values of DESCA( CSRC_ ) to run the
* code with.
*
* IAVAL (global output) INTEGER array
* On entry, IAVAL is an array of dimension LDVAL. On exit, this
* array contains the values of IA to run the code with.
*
* JAVAL (global output) INTEGER array
* On entry, JAVAL is an array of dimension LDVAL. On exit, this
* array contains the values of JA to run the code with.
*
* MBVAL (global output) INTEGER array
* On entry, MBVAL is an array of dimension LDVAL. On exit, this
* array contains the values of DESCB( M_ ) to run the code
* with.
*
* NBVAL (global output) INTEGER array
* On entry, NBVAL is an array of dimension LDVAL. On exit, this
* array contains the values of DESCB( N_ ) to run the code
* with.
*
* IMBBVAL (global output) INTEGER array
* On entry, IMBBVAL is an array of dimension LDVAL. On exit,
* this array contains the values of DESCB( IMB_ ) to run the
* code with.
*
* MBBVAL (global output) INTEGER array
* On entry, MBBVAL is an array of dimension LDVAL. On exit,
* this array contains the values of DESCB( MB_ ) to run the
* code with.
*
* INBBVAL (global output) INTEGER array
* On entry, INBBVAL is an array of dimension LDVAL. On exit,
* this array contains the values of DESCB( INB_ ) to run the
* code with.
*
* NBBVAL (global output) INTEGER array
* On entry, NBBVAL is an array of dimension LDVAL. On exit,
* this array contains the values of DESCB( NB_ ) to run the
* code with.
*
* RSCBVAL (global output) INTEGER array
* On entry, RSCBVAL is an array of dimension LDVAL. On exit,
* this array contains the values of DESCB( RSRC_ ) to run the
* code with.
*
* CSCBVAL (global output) INTEGER array
* On entry, CSCBVAL is an array of dimension LDVAL. On exit,
* this array contains the values of DESCB( CSRC_ ) to run the
* code with.
*
* IBVAL (global output) INTEGER array
* On entry, IBVAL is an array of dimension LDVAL. On exit, this
* array contains the values of IB to run the code with.
*
* JBVAL (global output) INTEGER array
* On entry, JBVAL is an array of dimension LDVAL. On exit, this
* array contains the values of JB to run the code with.
*
* MCVAL (global output) INTEGER array
* On entry, MCVAL is an array of dimension LDVAL. On exit, this
* array contains the values of DESCC( M_ ) to run the code
* with.
*
* NCVAL (global output) INTEGER array
* On entry, NCVAL is an array of dimension LDVAL. On exit, this
* array contains the values of DESCC( N_ ) to run the code
* with.
*
* IMBCVAL (global output) INTEGER array
* On entry, IMBCVAL is an array of dimension LDVAL. On exit,
* this array contains the values of DESCC( IMB_ ) to run the
* code with.
*
* MBCVAL (global output) INTEGER array
* On entry, MBCVAL is an array of dimension LDVAL. On exit,
* this array contains the values of DESCC( MB_ ) to run the
* code with.
*
* INBCVAL (global output) INTEGER array
* On entry, INBCVAL is an array of dimension LDVAL. On exit,
* this array contains the values of DESCC( INB_ ) to run the
* code with.
*
* NBCVAL (global output) INTEGER array
* On entry, NBCVAL is an array of dimension LDVAL. On exit,
* this array contains the values of DESCC( NB_ ) to run the
* code with.
*
* RSCCVAL (global output) INTEGER array
* On entry, RSCCVAL is an array of dimension LDVAL. On exit,
* this array contains the values of DESCC( RSRC_ ) to run the
* code with.
*
* CSCCVAL (global output) INTEGER array
* On entry, CSCCVAL is an array of dimension LDVAL. On exit,
* this array contains the values of DESCC( CSRC_ ) to run the
* code with.
*
* ICVAL (global output) INTEGER array
* On entry, ICVAL is an array of dimension LDVAL. On exit, this
* array contains the values of IC to run the code with.
*
* JCVAL (global output) INTEGER array
* On entry, JCVAL is an array of dimension LDVAL. On exit, this
* array contains the values of JC to run the code with.
*
* LDVAL (global input) INTEGER
* On entry, LDVAL specifies the maximum number of different va-
* lues that can be used for DIAG, SIDE, TRANSA, TRANSB, UPLO,
* M, N, K, DESCA(:), IA, JA, DESCB(:), IB, JB, DESCC(:), IC,
* JC. This is also the maximum number of test cases.
*
* NGRIDS (global output) INTEGER
* On exit, NGRIDS specifies the number of different values that
* can be used for P and Q.
*
* PVAL (global output) INTEGER array
* On entry, PVAL is an array of dimension LDPVAL. On exit, this
* array contains the values of P to run the code with.
*
* LDPVAL (global input) INTEGER
* On entry, LDPVAL specifies the maximum number of different
* values that can be used for P.
*
* QVAL (global output) INTEGER array
* On entry, QVAL is an array of dimension LDQVAL. On exit, this
* array contains the values of Q to run the code with.
*
* LDQVAL (global input) INTEGER
* On entry, LDQVAL specifies the maximum number of different
* values that can be used for Q.
*
* NBLOG (global output) INTEGER
* On exit, NBLOG specifies the logical computational block size
* to run the tests with. NBLOG must be at least one.
*
* LTEST (global output) LOGICAL array
* On entry, LTEST is an array of dimension at least eight. On
* exit, if LTEST( i ) is .TRUE., the i-th Level 3 PBLAS routine
* will be tested. See the input file for the ordering of the
* routines.
*
* IAM (local input) INTEGER
* On entry, IAM specifies the number of the process executing
* this routine.
*
* NPROCS (global input) INTEGER
* On entry, NPROCS specifies the total number of processes.
*
* ALPHA (global output) DOUBLE PRECISION
* On exit, ALPHA specifies the value of alpha to be used in all
* the test cases.
*
* BETA (global output) DOUBLE PRECISION
* On exit, BETA specifies the value of beta to be used in all
* the test cases.
*
* WORK (local workspace) INTEGER array
* On entry, WORK is an array of dimension at least
* MAX( 3, 2*NGRIDS+38*NMAT+NSUBS ) with NSUBS = 8. This array
* is used to pack all output arrays in order to send info in
* one message.
*
* -- Written on April 1, 1998 by
* Antoine Petitet, University of Tennessee, Knoxville 37996, USA.
*
* =====================================================================
*
* .. Parameters ..
INTEGER NIN, NSUBS
PARAMETER ( NIN = 11, NSUBS = 8 )
* ..
* .. Local Scalars ..
LOGICAL LTESTT
INTEGER I, ICTXT, J
* ..
* .. Local Arrays ..
CHARACTER*7 SNAMET
CHARACTER*79 USRINFO
* ..
* .. External Subroutines ..
EXTERNAL BLACS_ABORT, BLACS_GET, BLACS_GRIDEXIT,
$ BLACS_GRIDINIT, BLACS_SETUP, DGEBR2D, DGEBS2D,
$ ICOPY, IGEBR2D, IGEBS2D, SGEBR2D, SGEBS2D
* ..
* .. Intrinsic Functions ..
INTRINSIC CHAR, ICHAR, MAX, MIN
* ..
* .. Common Blocks ..
CHARACTER*7 SNAMES( NSUBS )
COMMON /SNAMEC/SNAMES
* ..
* .. Executable Statements ..
*
* Process 0 reads the input data, broadcasts to other processes and
* writes needed information to NOUT
*
IF( IAM.EQ.0 ) THEN
*
* Open file and skip data file header
*
OPEN( NIN, FILE='PDBLAS3TIM.dat', STATUS='OLD' )
READ( NIN, FMT = * ) SUMMRY
SUMMRY = ' '
*
* Read in user-supplied info about machine type, compiler, etc.
*
READ( NIN, FMT = 9999 ) USRINFO
*
* Read name and unit number for summary output file
*
READ( NIN, FMT = * ) SUMMRY
READ( NIN, FMT = * ) NOUT
IF( NOUT.NE.0 .AND. NOUT.NE.6 )
$ OPEN( NOUT, FILE = SUMMRY, STATUS = 'UNKNOWN' )
*
* Read and check the parameter values for the tests.
*
* Get logical computational block size
*
READ( NIN, FMT = * ) NBLOG
IF( NBLOG.LT.1 )
$ NBLOG = 32
*
* Get number of grids
*
READ( NIN, FMT = * ) NGRIDS
IF( NGRIDS.LT.1 .OR. NGRIDS.GT.LDPVAL ) THEN
WRITE( NOUT, FMT = 9998 ) 'Grids', LDPVAL
GO TO 120
ELSE IF( NGRIDS.GT.LDQVAL ) THEN
WRITE( NOUT, FMT = 9998 ) 'Grids', LDQVAL
GO TO 120
END IF
*
* Get values of P and Q
*
READ( NIN, FMT = * ) ( PVAL( I ), I = 1, NGRIDS )
READ( NIN, FMT = * ) ( QVAL( I ), I = 1, NGRIDS )
*
* Read ALPHA, BETA
*
READ( NIN, FMT = * ) ALPHA
READ( NIN, FMT = * ) BETA
*
* Read number of tests.
*
READ( NIN, FMT = * ) NMAT
IF( NMAT.LT.1 .OR. NMAT.GT.LDVAL ) THEN
WRITE( NOUT, FMT = 9998 ) 'Tests', LDVAL
GO TO 120
ENDIF
*
* Read in input data into arrays.
*
READ( NIN, FMT = * ) ( DIAGVAL( I ), I = 1, NMAT )
READ( NIN, FMT = * ) ( SIDEVAL( I ), I = 1, NMAT )
READ( NIN, FMT = * ) ( TRNAVAL( I ), I = 1, NMAT )
READ( NIN, FMT = * ) ( TRNBVAL( I ), I = 1, NMAT )
READ( NIN, FMT = * ) ( UPLOVAL( I ), I = 1, NMAT )
READ( NIN, FMT = * ) ( MVAL ( I ), I = 1, NMAT )
READ( NIN, FMT = * ) ( NVAL ( I ), I = 1, NMAT )
READ( NIN, FMT = * ) ( KVAL ( I ), I = 1, NMAT )
READ( NIN, FMT = * ) ( MAVAL ( I ), I = 1, NMAT )
READ( NIN, FMT = * ) ( NAVAL ( I ), I = 1, NMAT )
READ( NIN, FMT = * ) ( IMBAVAL( I ), I = 1, NMAT )
READ( NIN, FMT = * ) ( INBAVAL( I ), I = 1, NMAT )
READ( NIN, FMT = * ) ( MBAVAL ( I ), I = 1, NMAT )
READ( NIN, FMT = * ) ( NBAVAL ( I ), I = 1, NMAT )
READ( NIN, FMT = * ) ( RSCAVAL( I ), I = 1, NMAT )
READ( NIN, FMT = * ) ( CSCAVAL( I ), I = 1, NMAT )
READ( NIN, FMT = * ) ( IAVAL ( I ), I = 1, NMAT )
READ( NIN, FMT = * ) ( JAVAL ( I ), I = 1, NMAT )
READ( NIN, FMT = * ) ( MBVAL ( I ), I = 1, NMAT )
READ( NIN, FMT = * ) ( NBVAL ( I ), I = 1, NMAT )
READ( NIN, FMT = * ) ( IMBBVAL( I ), I = 1, NMAT )
READ( NIN, FMT = * ) ( INBBVAL( I ), I = 1, NMAT )
READ( NIN, FMT = * ) ( MBBVAL ( I ), I = 1, NMAT )
READ( NIN, FMT = * ) ( NBBVAL ( I ), I = 1, NMAT )
READ( NIN, FMT = * ) ( RSCBVAL( I ), I = 1, NMAT )
READ( NIN, FMT = * ) ( CSCBVAL( I ), I = 1, NMAT )
READ( NIN, FMT = * ) ( IBVAL ( I ), I = 1, NMAT )
READ( NIN, FMT = * ) ( JBVAL ( I ), I = 1, NMAT )
READ( NIN, FMT = * ) ( MCVAL ( I ), I = 1, NMAT )
READ( NIN, FMT = * ) ( NCVAL ( I ), I = 1, NMAT )
READ( NIN, FMT = * ) ( IMBCVAL( I ), I = 1, NMAT )
READ( NIN, FMT = * ) ( INBCVAL( I ), I = 1, NMAT )
READ( NIN, FMT = * ) ( MBCVAL ( I ), I = 1, NMAT )
READ( NIN, FMT = * ) ( NBCVAL ( I ), I = 1, NMAT )
READ( NIN, FMT = * ) ( RSCCVAL( I ), I = 1, NMAT )
READ( NIN, FMT = * ) ( CSCCVAL( I ), I = 1, NMAT )
READ( NIN, FMT = * ) ( ICVAL ( I ), I = 1, NMAT )
READ( NIN, FMT = * ) ( JCVAL ( I ), I = 1, NMAT )
*
* Read names of subroutines and flags which indicate
* whether they are to be tested.
*
DO 10 I = 1, NSUBS
LTEST( I ) = .FALSE.
10 CONTINUE
20 CONTINUE
READ( NIN, FMT = 9996, END = 50 ) SNAMET, LTESTT
DO 30 I = 1, NSUBS
IF( SNAMET.EQ.SNAMES( I ) )
$ GO TO 40
30 CONTINUE
*
WRITE( NOUT, FMT = 9995 )SNAMET
GO TO 120
*
40 CONTINUE
LTEST( I ) = LTESTT
GO TO 20
*
50 CONTINUE
*
* Close input file
*
CLOSE ( NIN )
*
* For pvm only: if virtual machine not set up, allocate it and
* spawn the correct number of processes.
*
IF( NPROCS.LT.1 ) THEN
NPROCS = 0
DO 60 I = 1, NGRIDS
NPROCS = MAX( NPROCS, PVAL( I )*QVAL( I ) )
60 CONTINUE
CALL BLACS_SETUP( IAM, NPROCS )
END IF
*
* Temporarily define blacs grid to include all processes so
* information can be broadcast to all processes
*
CALL BLACS_GET( -1, 0, ICTXT )
CALL BLACS_GRIDINIT( ICTXT, 'Row-major', 1, NPROCS )
*
* Pack information arrays and broadcast
*
CALL DGEBS2D( ICTXT, 'All', ' ', 1, 1, ALPHA, 1 )
CALL DGEBS2D( ICTXT, 'All', ' ', 1, 1, BETA, 1 )
*
WORK( 1 ) = NGRIDS
WORK( 2 ) = NMAT
WORK( 3 ) = NBLOG
CALL IGEBS2D( ICTXT, 'All', ' ', 3, 1, WORK, 3 )
*
I = 1
DO 70 J = 1, NMAT
WORK( I ) = ICHAR( DIAGVAL( J ) )
WORK( I+1 ) = ICHAR( SIDEVAL( J ) )
WORK( I+2 ) = ICHAR( TRNAVAL( J ) )
WORK( I+3 ) = ICHAR( TRNBVAL( J ) )
WORK( I+4 ) = ICHAR( UPLOVAL( J ) )
I = I + 5
70 CONTINUE
CALL ICOPY( NGRIDS, PVAL, 1, WORK( I ), 1 )
I = I + NGRIDS
CALL ICOPY( NGRIDS, QVAL, 1, WORK( I ), 1 )
I = I + NGRIDS
CALL ICOPY( NMAT, MVAL, 1, WORK( I ), 1 )
I = I + NMAT
CALL ICOPY( NMAT, NVAL, 1, WORK( I ), 1 )
I = I + NMAT
CALL ICOPY( NMAT, KVAL, 1, WORK( I ), 1 )
I = I + NMAT
CALL ICOPY( NMAT, MAVAL, 1, WORK( I ), 1 )
I = I + NMAT
CALL ICOPY( NMAT, NAVAL, 1, WORK( I ), 1 )
I = I + NMAT
CALL ICOPY( NMAT, IMBAVAL, 1, WORK( I ), 1 )
I = I + NMAT
CALL ICOPY( NMAT, INBAVAL, 1, WORK( I ), 1 )
I = I + NMAT
CALL ICOPY( NMAT, MBAVAL, 1, WORK( I ), 1 )
I = I + NMAT
CALL ICOPY( NMAT, NBAVAL, 1, WORK( I ), 1 )
I = I + NMAT
CALL ICOPY( NMAT, RSCAVAL, 1, WORK( I ), 1 )
I = I + NMAT
CALL ICOPY( NMAT, CSCAVAL, 1, WORK( I ), 1 )
I = I + NMAT
CALL ICOPY( NMAT, IAVAL, 1, WORK( I ), 1 )
I = I + NMAT
CALL ICOPY( NMAT, JAVAL, 1, WORK( I ), 1 )
I = I + NMAT
CALL ICOPY( NMAT, MBVAL, 1, WORK( I ), 1 )
I = I + NMAT
CALL ICOPY( NMAT, NBVAL, 1, WORK( I ), 1 )
I = I + NMAT
CALL ICOPY( NMAT, IMBBVAL, 1, WORK( I ), 1 )
I = I + NMAT
CALL ICOPY( NMAT, INBBVAL, 1, WORK( I ), 1 )
I = I + NMAT
CALL ICOPY( NMAT, MBBVAL, 1, WORK( I ), 1 )
I = I + NMAT
CALL ICOPY( NMAT, NBBVAL, 1, WORK( I ), 1 )
I = I + NMAT
CALL ICOPY( NMAT, RSCBVAL, 1, WORK( I ), 1 )
I = I + NMAT
CALL ICOPY( NMAT, CSCBVAL, 1, WORK( I ), 1 )
I = I + NMAT
CALL ICOPY( NMAT, IBVAL, 1, WORK( I ), 1 )
I = I + NMAT
CALL ICOPY( NMAT, JBVAL, 1, WORK( I ), 1 )
I = I + NMAT
CALL ICOPY( NMAT, MCVAL, 1, WORK( I ), 1 )
I = I + NMAT
CALL ICOPY( NMAT, NCVAL, 1, WORK( I ), 1 )
I = I + NMAT
CALL ICOPY( NMAT, IMBCVAL, 1, WORK( I ), 1 )
I = I + NMAT
CALL ICOPY( NMAT, INBCVAL, 1, WORK( I ), 1 )
I = I + NMAT
CALL ICOPY( NMAT, MBCVAL, 1, WORK( I ), 1 )
I = I + NMAT
CALL ICOPY( NMAT, NBCVAL, 1, WORK( I ), 1 )
I = I + NMAT
CALL ICOPY( NMAT, RSCCVAL, 1, WORK( I ), 1 )
I = I + NMAT
CALL ICOPY( NMAT, CSCCVAL, 1, WORK( I ), 1 )
I = I + NMAT
CALL ICOPY( NMAT, ICVAL, 1, WORK( I ), 1 )
I = I + NMAT
CALL ICOPY( NMAT, JCVAL, 1, WORK( I ), 1 )
I = I + NMAT
*
DO 80 J = 1, NSUBS
IF( LTEST( J ) ) THEN
WORK( I ) = 1
ELSE
WORK( I ) = 0
END IF
I = I + 1
80 CONTINUE
I = I - 1
CALL IGEBS2D( ICTXT, 'All', ' ', I, 1, WORK, I )
*
* regurgitate input
*
WRITE( NOUT, FMT = 9999 )
$ 'Level 3 PBLAS timing program.'
WRITE( NOUT, FMT = 9999 ) USRINFO
WRITE( NOUT, FMT = * )
WRITE( NOUT, FMT = 9999 )
$ 'Tests of the real double precision '//
$ 'Level 3 PBLAS'
WRITE( NOUT, FMT = * )
WRITE( NOUT, FMT = 9992 ) NMAT
WRITE( NOUT, FMT = 9986 ) NBLOG
WRITE( NOUT, FMT = 9991 ) NGRIDS
WRITE( NOUT, FMT = 9989 )
$ 'P', ( PVAL(I), I = 1, MIN(NGRIDS, 5) )
IF( NGRIDS.GT.5 )
$ WRITE( NOUT, FMT = 9990 ) ( PVAL(I), I = 6,
$ MIN( 10, NGRIDS ) )
IF( NGRIDS.GT.10 )
$ WRITE( NOUT, FMT = 9990 ) ( PVAL(I), I = 11,
$ MIN( 15, NGRIDS ) )
IF( NGRIDS.GT.15 )
$ WRITE( NOUT, FMT = 9990 ) ( PVAL(I), I = 16, NGRIDS )
WRITE( NOUT, FMT = 9989 )
$ 'Q', ( QVAL(I), I = 1, MIN(NGRIDS, 5) )
IF( NGRIDS.GT.5 )
$ WRITE( NOUT, FMT = 9990 ) ( QVAL(I), I = 6,
$ MIN( 10, NGRIDS ) )
IF( NGRIDS.GT.10 )
$ WRITE( NOUT, FMT = 9990 ) ( QVAL(I), I = 11,
$ MIN( 15, NGRIDS ) )
IF( NGRIDS.GT.15 )
$ WRITE( NOUT, FMT = 9990 ) ( QVAL(I), I = 16, NGRIDS )
WRITE( NOUT, FMT = 9994 ) ALPHA
WRITE( NOUT, FMT = 9993 ) BETA
IF( LTEST( 1 ) ) THEN
WRITE( NOUT, FMT = 9988 ) SNAMES( 1 ), ' ... Yes'
ELSE
WRITE( NOUT, FMT = 9988 ) SNAMES( 1 ), ' ... No '
END IF
DO 90 I = 2, NSUBS
IF( LTEST( I ) ) THEN
WRITE( NOUT, FMT = 9987 ) SNAMES( I ), ' ... Yes'
ELSE
WRITE( NOUT, FMT = 9987 ) SNAMES( I ), ' ... No '
END IF
90 CONTINUE
WRITE( NOUT, FMT = * )
*
ELSE
*
* If in pvm, must participate setting up virtual machine
*
IF( NPROCS.LT.1 )
$ CALL BLACS_SETUP( IAM, NPROCS )
*
* Temporarily define blacs grid to include all processes so
* information can be broadcast to all processes
*
CALL BLACS_GET( -1, 0, ICTXT )
CALL BLACS_GRIDINIT( ICTXT, 'Row-major', 1, NPROCS )
*
CALL DGEBR2D( ICTXT, 'All', ' ', 1, 1, ALPHA, 1, 0, 0 )
CALL DGEBR2D( ICTXT, 'All', ' ', 1, 1, BETA, 1, 0, 0 )
*
CALL IGEBR2D( ICTXT, 'All', ' ', 3, 1, WORK, 3, 0, 0 )
NGRIDS = WORK( 1 )
NMAT = WORK( 2 )
NBLOG = WORK( 3 )
*
I = 2*NGRIDS + 38*NMAT + NSUBS
CALL IGEBR2D( ICTXT, 'All', ' ', I, 1, WORK, I, 0, 0 )
*
I = 1
DO 100 J = 1, NMAT
DIAGVAL( J ) = CHAR( WORK( I ) )
SIDEVAL( J ) = CHAR( WORK( I+1 ) )
TRNAVAL( J ) = CHAR( WORK( I+2 ) )
TRNBVAL( J ) = CHAR( WORK( I+3 ) )
UPLOVAL( J ) = CHAR( WORK( I+4 ) )
I = I + 5
100 CONTINUE
CALL ICOPY( NGRIDS, WORK( I ), 1, PVAL, 1 )
I = I + NGRIDS
CALL ICOPY( NGRIDS, WORK( I ), 1, QVAL, 1 )
I = I + NGRIDS
CALL ICOPY( NMAT, WORK( I ), 1, MVAL, 1 )
I = I + NMAT
CALL ICOPY( NMAT, WORK( I ), 1, NVAL, 1 )
I = I + NMAT
CALL ICOPY( NMAT, WORK( I ), 1, KVAL, 1 )
I = I + NMAT
CALL ICOPY( NMAT, WORK( I ), 1, MAVAL, 1 )
I = I + NMAT
CALL ICOPY( NMAT, WORK( I ), 1, NAVAL, 1 )
I = I + NMAT
CALL ICOPY( NMAT, WORK( I ), 1, IMBAVAL, 1 )
I = I + NMAT
CALL ICOPY( NMAT, WORK( I ), 1, INBAVAL, 1 )
I = I + NMAT
CALL ICOPY( NMAT, WORK( I ), 1, MBAVAL, 1 )
I = I + NMAT
CALL ICOPY( NMAT, WORK( I ), 1, NBAVAL, 1 )
I = I + NMAT
CALL ICOPY( NMAT, WORK( I ), 1, RSCAVAL, 1 )
I = I + NMAT
CALL ICOPY( NMAT, WORK( I ), 1, CSCAVAL, 1 )
I = I + NMAT
CALL ICOPY( NMAT, WORK( I ), 1, IAVAL, 1 )
I = I + NMAT
CALL ICOPY( NMAT, WORK( I ), 1, JAVAL, 1 )
I = I + NMAT
CALL ICOPY( NMAT, WORK( I ), 1, MBVAL, 1 )
I = I + NMAT
CALL ICOPY( NMAT, WORK( I ), 1, NBVAL, 1 )
I = I + NMAT
CALL ICOPY( NMAT, WORK( I ), 1, IMBBVAL, 1 )
I = I + NMAT
CALL ICOPY( NMAT, WORK( I ), 1, INBBVAL, 1 )
I = I + NMAT
CALL ICOPY( NMAT, WORK( I ), 1, MBBVAL, 1 )
I = I + NMAT
CALL ICOPY( NMAT, WORK( I ), 1, NBBVAL, 1 )
I = I + NMAT
CALL ICOPY( NMAT, WORK( I ), 1, RSCBVAL, 1 )
I = I + NMAT
CALL ICOPY( NMAT, WORK( I ), 1, CSCBVAL, 1 )
I = I + NMAT
CALL ICOPY( NMAT, WORK( I ), 1, IBVAL, 1 )
I = I + NMAT
CALL ICOPY( NMAT, WORK( I ), 1, JBVAL, 1 )
I = I + NMAT
CALL ICOPY( NMAT, WORK( I ), 1, MCVAL, 1 )
I = I + NMAT
CALL ICOPY( NMAT, WORK( I ), 1, NCVAL, 1 )
I = I + NMAT
CALL ICOPY( NMAT, WORK( I ), 1, IMBCVAL, 1 )
I = I + NMAT
CALL ICOPY( NMAT, WORK( I ), 1, INBCVAL, 1 )
I = I + NMAT
CALL ICOPY( NMAT, WORK( I ), 1, MBCVAL, 1 )
I = I + NMAT
CALL ICOPY( NMAT, WORK( I ), 1, NBCVAL, 1 )
I = I + NMAT
CALL ICOPY( NMAT, WORK( I ), 1, RSCCVAL, 1 )
I = I + NMAT
CALL ICOPY( NMAT, WORK( I ), 1, CSCCVAL, 1 )
I = I + NMAT
CALL ICOPY( NMAT, WORK( I ), 1, ICVAL, 1 )
I = I + NMAT
CALL ICOPY( NMAT, WORK( I ), 1, JCVAL, 1 )
I = I + NMAT
*
DO 110 J = 1, NSUBS
IF( WORK( I ).EQ.1 ) THEN
LTEST( J ) = .TRUE.
ELSE
LTEST( J ) = .FALSE.
END IF
I = I + 1
110 CONTINUE
*
END IF
*
CALL BLACS_GRIDEXIT( ICTXT )
*
RETURN
*
120 WRITE( NOUT, FMT = 9997 )
CLOSE( NIN )
IF( NOUT.NE.6 .AND. NOUT.NE.0 )
$ CLOSE( NOUT )
CALL BLACS_ABORT( ICTXT, 1 )
*
STOP
*
9999 FORMAT( A )
9998 FORMAT( ' Number of values of ',5A, ' is less than 1 or greater ',
$ 'than ', I2 )
9997 FORMAT( ' Illegal input in file ',40A,'. Aborting run.' )
9996 FORMAT( A7, L2 )
9995 FORMAT( ' Subprogram name ', A7, ' not recognized',
$ /' ******* TESTS ABANDONED *******' )
9994 FORMAT( 2X, 'Alpha : ', G16.6 )
9993 FORMAT( 2X, 'Beta : ', G16.6 )
9992 FORMAT( 2X, 'Number of Tests : ', I6 )
9991 FORMAT( 2X, 'Number of process grids : ', I6 )
9990 FORMAT( 2X, ' : ', 5I6 )
9989 FORMAT( 2X, A1, ' : ', 5I6 )
9988 FORMAT( 2X, 'Routines to be tested : ', A, A8 )
9987 FORMAT( 2X, ' ', A, A8 )
9986 FORMAT( 2X, 'Logical block size : ', I6 )
*
* End of PDBLA3TIMINFO
*
END
|