File: psblas1tim.f

package info (click to toggle)
scalapack 1.7.4-2
  • links: PTS
  • area: main
  • in suites: etch, etch-m68k
  • size: 34,004 kB
  • ctags: 30,444
  • sloc: fortran: 310,201; ansic: 64,027; makefile: 1,838; sh: 4
file content (1144 lines) | stat: -rw-r--r-- 42,142 bytes parent folder | download | duplicates (8)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
      PROGRAM PSBLA1TIM
*
*  -- PBLAS timing driver (version 2.0) --
*     University of Tennessee, Knoxville, Oak Ridge National Laboratory,
*     and University of California, Berkeley.
*     April 1, 1998
*
*  Purpose
*  =======
*
*  PSBLA1TIM  is the main timing program for the Level 1 PBLAS routines.
*
*  The program must be driven by a short data file.  An  annotated exam-
*  ple of a data file can be obtained by deleting the first 3 characters
*  from the following 40 lines:
*  'Level 1 PBLAS, Timing input file'
*  'Intel iPSC/860 hypercube, gamma model.'
*  'PSBLAS1TIM.SUMM'          output file name (if any)
*  6       device out
*  1       number of process grids (ordered pairs of P & Q)
*  2 2 1 4 2 3 8        values of P
*  2 2 4 1 3 2 1        values of Q
*  1.0E0                value of ALPHA
*  2                    number of tests problems
*  3  4                 values of N
*  6 10                 values of M_X
*  6 10                 values of N_X
*  2  5                 values of IMB_X
*  2  5                 values of INB_X
*  2  5                 values of MB_X
*  2  5                 values of NB_X
*  0  1                 values of RSRC_X
*  0  0                 values of CSRC_X
*  1  1                 values of IX
*  1  1                 values of JX
*  1  1                 values of INCX
*  6 10                 values of M_Y
*  6 10                 values of N_Y
*  2  5                 values of IMB_Y
*  2  5                 values of INB_Y
*  2  5                 values of MB_Y
*  2  5                 values of NB_Y
*  0  1                 values of RSRC_Y
*  0  0                 values of CSRC_Y
*  1  1                 values of IY
*  1  1                 values of JY
*  6  1                 values of INCY
*  PSSWAP  T            put F for no test in the same column
*  PSSCAL  T            put F for no test in the same column
*  PSCOPY  T            put F for no test in the same column
*  PSAXPY  T            put F for no test in the same column
*  PSDOT   T            put F for no test in the same column
*  PSNRM2  T            put F for no test in the same column
*  PSASUM  T            put F for no test in the same column
*  PSAMAX  T            put F for no test in the same column
*
*  Internal Parameters
*  ===================
*
*  TOTMEM  INTEGER
*          TOTMEM  is  a machine-specific parameter indicating the maxi-
*          mum  amount  of  available  memory per  process in bytes. The
*          user  should  customize TOTMEM to his  platform.  Remember to
*          leave  room  in  memory  for the  operating system, the BLACS
*          buffer, etc.  For  example,  on  a system with 8 MB of memory
*          per process (e.g., one processor  on an Intel iPSC/860),  the
*          parameters we use are TOTMEM=6200000  (leaving 1.8 MB for OS,
*          code, BLACS buffer, etc).  However,  for PVM,  we usually set
*          TOTMEM = 2000000.  Some experimenting  with the maximum value
*          of TOTMEM may be required. By default, TOTMEM is 2000000.
*
*  REALSZ  INTEGER
*          REALSZ  indicates  the  length in bytes on the given platform
*          for  a  single  precision  real. By default, REALSZ is set to
*          four.
*
*  MEM     REAL array
*          MEM is an array of dimension TOTMEM / REALSZ.
*          All arrays used by SCALAPACK routines are allocated from this
*          array MEM and referenced by pointers. The  integer  IPA,  for
*          example, is a pointer to the starting element of MEM for  the
*          matrix A.
*
*  -- Written on April 1, 1998 by
*     Antoine Petitet, University  of  Tennessee, Knoxville 37996, USA.
*
*  =====================================================================
*
*     .. Parameters ..
      INTEGER            MAXTESTS, MAXGRIDS, REALSZ, TOTMEM, MEMSIZ,
     $                   NSUBS
      PARAMETER          ( MAXTESTS = 20, MAXGRIDS = 20, REALSZ = 4,
     $                   TOTMEM = 2000000, NSUBS = 8,
     $                   MEMSIZ = TOTMEM / REALSZ )
      INTEGER            BLOCK_CYCLIC_2D_INB, CSRC_, CTXT_, DLEN_,
     $                   DTYPE_, IMB_, INB_, LLD_, MB_, M_, NB_, N_,
     $                   RSRC_
      PARAMETER          ( BLOCK_CYCLIC_2D_INB = 2, DLEN_ = 11,
     $                   DTYPE_ = 1, CTXT_ = 2, M_ = 3, N_ = 4,
     $                   IMB_ = 5, INB_ = 6, MB_ = 7, NB_ = 8,
     $                   RSRC_ = 9, CSRC_ = 10, LLD_ = 11 )
*     ..
*     .. Local Scalars ..
      INTEGER            CSRCX, CSRCY, I, IAM, ICTXT, IMBX, IMBY, IMIDX,
     $                   IMIDY, INBX, INBY, INCX, INCY, IPOSTX, IPOSTY,
     $                   IPREX, IPREY, IPX, IPY, IX, IXSEED, IY, IYSEED,
     $                   J, JX, JY, K, MBX, MBY, MEMREQD, MPX, MPY, MX,
     $                   MY, MYCOL, MYROW, N, NBX, NBY, NGRIDS, NOUT,
     $                   NPCOL, NPROCS, NPROW, NQX, NQY, NTESTS, NX, NY,
     $                   PISCLR, RSRCX, RSRCY
      REAL               ALPHA, PSCLR, PUSCLR
      DOUBLE PRECISION   ADDS, CFLOPS, MULTS, NOPS, WFLOPS
*     ..
*     .. Local Arrays ..
      CHARACTER*80       OUTFILE
      LOGICAL            LTEST( NSUBS ), YCHECK( NSUBS )
      INTEGER            CSCXVAL( MAXTESTS ), CSCYVAL( MAXTESTS ),
     $                   DESCX( DLEN_ ), DESCY( DLEN_ ), IERR( 2 ),
     $                   IMBXVAL( MAXTESTS ), IMBYVAL( MAXTESTS ),
     $                   INBXVAL( MAXTESTS ), INBYVAL( MAXTESTS ),
     $                   INCXVAL( MAXTESTS ), INCYVAL( MAXTESTS ),
     $                   IXVAL( MAXTESTS ), IYVAL( MAXTESTS ),
     $                   JXVAL( MAXTESTS ), JYVAL( MAXTESTS ),
     $                   MBXVAL( MAXTESTS ), MBYVAL( MAXTESTS ),
     $                   MXVAL( MAXTESTS ), MYVAL( MAXTESTS ),
     $                   NBXVAL( MAXTESTS ), NBYVAL( MAXTESTS ),
     $                   NVAL( MAXTESTS ), NXVAL( MAXTESTS ),
     $                   NYVAL( MAXTESTS ), PVAL( MAXTESTS ),
     $                   QVAL( MAXTESTS ), RSCXVAL( MAXTESTS ),
     $                   RSCYVAL( MAXTESTS )
      REAL               MEM( MEMSIZ )
      DOUBLE PRECISION   CTIME( 1 ), WTIME( 1 )
*     ..
*     .. External Subroutines ..
      EXTERNAL           BLACS_BARRIER, BLACS_EXIT, BLACS_GET,
     $                   BLACS_GRIDEXIT, BLACS_GRIDINFO, BLACS_GRIDINIT,
     $                   BLACS_PINFO, IGSUM2D, PB_BOOT, PB_COMBINE,
     $                   PB_TIMER, PSAMAX, PSASUM, PSAXPY,
     $                   PSBLA1TIMINFO, PSCOPY, PSDOT, PSLAGEN, PSNRM2,
     $                   PSSCAL, PSSWAP, PVDESCCHK, PVDIMCHK
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          DBLE
*     ..
*     .. Common Blocks ..
      CHARACTER*7        SNAMES( NSUBS )
      LOGICAL            ABRTFLG
      INTEGER            INFO, NBLOG
      COMMON             /SNAMEC/SNAMES
      COMMON             /INFOC/INFO, NBLOG
      COMMON             /PBERRORC/NOUT, ABRTFLG
*     ..
*     .. Data Statements ..
      DATA               SNAMES/'PSSWAP ', 'PSSCAL ', 'PSCOPY ',
     $                   'PSAXPY ', 'PSDOT  ', 'PSNRM2 ',
     $                   'PSASUM ', 'PSAMAX '/
      DATA               YCHECK/.TRUE., .FALSE., .TRUE., .TRUE., .TRUE.,
     $                   .FALSE., .FALSE., .FALSE./
*     ..
*     .. Executable Statements ..
*
*     Initialization
*
*     Set flag so that the PBLAS error handler won't abort on errors, so
*     that the tester will detect unsupported operations.
*
      ABRTFLG = .FALSE.
*
*     Seeds for random matrix generations.
*
      IXSEED = 100
      IYSEED = 200
*
*     Get starting information
*
      CALL BLACS_PINFO( IAM, NPROCS )
      CALL PSBLA1TIMINFO( OUTFILE, NOUT, NTESTS, NVAL, MXVAL, NXVAL,
     $                    IMBXVAL, MBXVAL, INBXVAL, NBXVAL, RSCXVAL,
     $                    CSCXVAL, IXVAL, JXVAL, INCXVAL, MYVAL,
     $                    NYVAL, IMBYVAL, MBYVAL, INBYVAL, NBYVAL,
     $                    RSCYVAL, CSCYVAL, IYVAL, JYVAL, INCYVAL,
     $                    MAXTESTS, NGRIDS, PVAL, MAXGRIDS, QVAL,
     $                    MAXGRIDS, LTEST, IAM, NPROCS, ALPHA, MEM )
*
      IF( IAM.EQ.0 )
     $   WRITE( NOUT, FMT = 9986 )
*
*     Loop over different process grids
*
      DO 60 I = 1, NGRIDS
*
         NPROW = PVAL( I )
         NPCOL = QVAL( I )
*
*        Make sure grid information is correct
*
         IERR( 1 ) = 0
         IF( NPROW.LT.1 ) THEN
            IF( IAM.EQ.0 )
     $         WRITE( NOUT, FMT = 9999 ) 'GRID SIZE', 'NPROW', NPROW
            IERR( 1 ) = 1
         ELSE IF( NPCOL.LT.1 ) THEN
            IF( IAM.EQ.0 )
     $         WRITE( NOUT, FMT = 9999 ) 'GRID SIZE', 'NPCOL', NPCOL
            IERR( 1 ) = 1
         ELSE IF( NPROW*NPCOL.GT.NPROCS ) THEN
            IF( IAM.EQ.0 )
     $         WRITE( NOUT, FMT = 9998 ) NPROW*NPCOL, NPROCS
            IERR( 1 ) = 1
         END IF
*
         IF( IERR( 1 ).GT.0 ) THEN
            IF( IAM.EQ.0 )
     $         WRITE( NOUT, FMT = 9997 ) 'GRID'
            GO TO 60
         END IF
*
*        Define process grid
*
         CALL BLACS_GET( -1, 0, ICTXT )
         CALL BLACS_GRIDINIT( ICTXT, 'Row-major', NPROW, NPCOL )
         CALL BLACS_GRIDINFO( ICTXT, NPROW, NPCOL, MYROW, MYCOL )
*
*        Go to bottom of process grid loop if this case doesn't use my
*        process
*
         IF( MYROW.GE.NPROW .OR. MYCOL.GE.NPCOL )
     $      GO TO 60
*
*        Loop over number of tests
*
         DO 50 J = 1, NTESTS
*
*           Get the test parameters
*
            N     = NVAL( J )
            MX    = MXVAL( J )
            NX    = NXVAL( J )
            IMBX  = IMBXVAL( J )
            MBX   = MBXVAL( J )
            INBX  = INBXVAL( J )
            NBX   = NBXVAL( J )
            RSRCX = RSCXVAL( J )
            CSRCX = CSCXVAL( J )
            IX    = IXVAL( J )
            JX    = JXVAL( J )
            INCX  = INCXVAL( J )
            MY    = MYVAL( J )
            NY    = NYVAL( J )
            IMBY  = IMBYVAL( J )
            MBY   = MBYVAL( J )
            INBY  = INBYVAL( J )
            NBY   = NBYVAL( J )
            RSRCY = RSCYVAL( J )
            CSRCY = CSCYVAL( J )
            IY    = IYVAL( J )
            JY    = JYVAL( J )
            INCY  = INCYVAL( J )
*
            IF( IAM.EQ.0 ) THEN
               WRITE( NOUT, FMT = * )
               WRITE( NOUT, FMT = 9996 ) J, NPROW, NPCOL
               WRITE( NOUT, FMT = * )
*
               WRITE( NOUT, FMT = 9995 )
               WRITE( NOUT, FMT = 9994 )
               WRITE( NOUT, FMT = 9995 )
               WRITE( NOUT, FMT = 9993 ) N, IX, JX, MX, NX, IMBX, INBX,
     $                                   MBX, NBX, RSRCX, CSRCX, INCX
*
               WRITE( NOUT, FMT = 9995 )
               WRITE( NOUT, FMT = 9992 )
               WRITE( NOUT, FMT = 9995 )
               WRITE( NOUT, FMT = 9993 ) N, IY, JY, MY, NY, IMBY, INBY,
     $                                   MBY, NBY, RSRCY, CSRCY, INCY
               WRITE( NOUT, FMT = 9995 )
               WRITE( NOUT, FMT = 9983 )
            END IF
*
*           Check the validity of the input and initialize DESC_
*
            CALL PVDESCCHK( ICTXT, NOUT, 'X', DESCX,
     $                      BLOCK_CYCLIC_2D_INB, MX, NX, IMBX, INBX,
     $                      MBX, NBX, RSRCX, CSRCX, INCX, MPX, NQX,
     $                      IPREX, IMIDX, IPOSTX, 0, 0, IERR( 1 ) )
            CALL PVDESCCHK( ICTXT, NOUT, 'Y', DESCY,
     $                      BLOCK_CYCLIC_2D_INB, MY, NY, IMBY, INBY,
     $                      MBY, NBY, RSRCY, CSRCY, INCY, MPY, NQY,
     $                      IPREY, IMIDY, IPOSTY, 0, 0, IERR( 2 ) )
*
            IF( IERR( 1 ).GT.0 .OR. IERR( 2 ).GT.0 )
     $         GO TO 40
*
*           Assign pointers into MEM for matrices corresponding to
*           vectors X and Y. Ex: IPX starts at position MEM( 1 ).
*
            IPX = 1
            IPY = IPX + DESCX( LLD_ ) * NQX
*
*           Check if sufficient memory.
*
            MEMREQD = IPY + DESCY( LLD_ ) * NQY - 1
            IERR( 1 ) = 0
            IF( MEMREQD.GT.MEMSIZ ) THEN
               IF( IAM.EQ.0 )
     $            WRITE( NOUT, FMT = 9990 ) MEMREQD*REALSZ
               IERR( 1 ) = 1
            END IF
*
*           Check all processes for an error
*
            CALL IGSUM2D( ICTXT, 'All', ' ', 1, 1, IERR, 1, -1, 0 )
*
            IF( IERR( 1 ).GT.0 ) THEN
               IF( IAM.EQ.0 )
     $            WRITE( NOUT, FMT = 9991 )
               GO TO 40
            END IF
*
*           Loop over all PBLAS 1 routines
*
            DO 30 K = 1, NSUBS
*
*              Continue only if this sub has to be tested.
*
               IF( .NOT.LTEST( K ) )
     $            GO TO 30
*
*              Check the validity of the operand sizes
*
               CALL PVDIMCHK( ICTXT, NOUT, N, 'X', IX, JX, DESCX, INCX,
     $                        IERR( 1 ) )
               CALL PVDIMCHK( ICTXT, NOUT, N, 'Y', IY, JY, DESCY, INCY,
     $                        IERR( 2 ) )
*
               IF( IERR( 1 ).NE.0 .OR. IERR( 2 ).NE.0 )
     $            GO TO 30
*
*              Generate distributed matrices X and Y
*
               CALL PSLAGEN( .FALSE., 'None', 'No diag', 0, MX, NX, 1,
     $                       1, DESCX, IXSEED, MEM( IPX ),
     $                       DESCX( LLD_ ) )
               IF( YCHECK( K ) )
     $            CALL PSLAGEN( .FALSE., 'None', 'No diag', 0, MY, NY,
     $                          1, 1, DESCY, IYSEED, MEM( IPY ),
     $                          DESCY( LLD_ ) )
*
               INFO = 0
               CALL PB_BOOT()
               CALL BLACS_BARRIER( ICTXT, 'All' )
*
*              Call the PBLAS routine
*
               IF( K.EQ.1 ) THEN
*
*                 Test PSSWAP
*
                  ADDS  = 0.0D+0
                  MULTS = 0.0D+0
                  CALL PB_TIMER( 1 )
                  CALL PSSWAP( N, MEM( IPX ), IX, JX, DESCX, INCX,
     $                         MEM( IPY ), IY, JY, DESCY, INCY )
                  CALL PB_TIMER( 1 )
*
               ELSE IF( K.EQ.2 ) THEN
*
*                 Test PSSCAL
*
                  ADDS  = 0.0D+0
                  MULTS = DBLE( N )
                  CALL PB_TIMER( 1 )
                  CALL PSSCAL( N, ALPHA, MEM( IPX ), IX, JX, DESCX,
     $                         INCX )
                  CALL PB_TIMER( 1 )
*
               ELSE IF( K.EQ.3 ) THEN
*
*                 Test PSCOPY
*
                  ADDS  = 0.0D+0
                  MULTS = 0.0D+0
                  CALL PB_TIMER( 1 )
                  CALL PSCOPY( N, MEM( IPX ), IX, JX, DESCX, INCX,
     $                         MEM( IPY ), IY, JY, DESCY, INCY )
                  CALL PB_TIMER( 1 )
*
               ELSE IF( K.EQ.4 ) THEN
*
*                 Test PSAXPY
*
                  ADDS  = DBLE( N )
                  MULTS = DBLE( N )
                  CALL PB_TIMER( 1 )
                  CALL PSAXPY( N, ALPHA, MEM( IPX ), IX, JX, DESCX,
     $                         INCX, MEM( IPY ), IY, JY, DESCY, INCY )
                  CALL PB_TIMER( 1 )
*
               ELSE IF( K.EQ.5 ) THEN
*
*                 Test PSDOT
*
                  ADDS = DBLE( N-1 )
                  MULTS = DBLE( N )
                  CALL PB_TIMER( 1 )
                  CALL PSDOT( N, PSCLR, MEM( IPX ), IX, JX, DESCX, INCX,
     $                        MEM( IPY ), IY, JY, DESCY, INCY )
                  CALL PB_TIMER( 1 )
*
               ELSE IF( K.EQ.6 ) THEN
*
*                 Test PSNRM2
*
                  ADDS  = DBLE( N-1 )
                  MULTS = DBLE( N )
                  CALL PB_TIMER( 1 )
                  CALL PSNRM2( N, PUSCLR, MEM( IPX ), IX, JX, DESCX,
     $                         INCX )
                  CALL PB_TIMER( 1 )
*
               ELSE IF( K.EQ.7 ) THEN
*
*                 Test PSASUM
*
                  ADDS  = DBLE( N - 1 )
                  MULTS = 0.0D+0
                  CALL PB_TIMER( 1 )
                  CALL PSASUM( N, PUSCLR, MEM( IPX ), IX, JX, DESCX,
     $                         INCX )
                  CALL PB_TIMER( 1 )
*
               ELSE IF( K.EQ.8 ) THEN
*
                  ADDS  = 0.0D+0
                  MULTS = 0.0D+0
                  CALL PB_TIMER( 1 )
                  CALL PSAMAX( N, PSCLR, PISCLR, MEM( IPX ), IX, JX,
     $                         DESCX, INCX )
                  CALL PB_TIMER( 1 )
*
               END IF
*
*              Check if the operation has been performed.
*
               IF( INFO.NE.0 ) THEN
                  IF( IAM.EQ.0 )
     $               WRITE( NOUT, FMT = 9985 ) INFO
                  GO TO 30
               END IF
*
               CALL PB_COMBINE( ICTXT, 'All', '>', 'W', 1, 1, WTIME )
               CALL PB_COMBINE( ICTXT, 'All', '>', 'C', 1, 1, CTIME )
*
*              Only node 0 prints timing test result
*
               IF( IAM.EQ.0 ) THEN
*
*                 Calculate total flops
*
                  NOPS = ADDS + MULTS
*
*                 Print WALL time if machine supports it
*
                  IF( WTIME( 1 ).GT.0.0D+0 ) THEN
                     WFLOPS = NOPS / ( WTIME( 1 ) * 1.0D+6 )
                  ELSE
                     WFLOPS = 0.0D+0
                  END IF
*
*                 Print CPU time if machine supports it
*
                  IF( CTIME( 1 ).GT.0.0D+0 ) THEN
                     CFLOPS = NOPS / ( CTIME( 1 ) * 1.0D+6 )
                  ELSE
                     CFLOPS = 0.0D+0
                  END IF
*
                  WRITE( NOUT, FMT = 9984 ) SNAMES( K ), WTIME( 1 ),
     $                                      WFLOPS, CTIME( 1 ), CFLOPS
*
               END IF
*
   30       CONTINUE
*
   40       IF( IAM.EQ.0 ) THEN
               WRITE( NOUT, FMT = 9995 )
               WRITE( NOUT, FMT = * )
               WRITE( NOUT, FMT = 9988 ) J
            END IF
*
   50   CONTINUE
*
        IF( IAM.EQ.0 ) THEN
           WRITE( NOUT, FMT = * )
           WRITE( NOUT, FMT = 9987 )
           WRITE( NOUT, FMT = * )
        END IF
*
        CALL BLACS_GRIDEXIT( ICTXT )
*
   60 CONTINUE
*
      CALL BLACS_EXIT( 0 )
*
 9999 FORMAT( 'ILLEGAL ', A, ': ', A, ' = ', I10,
     $        ' should be at least 1' )
 9998 FORMAT( 'ILLEGAL GRID: NPROW*NPCOL = ', I4,
     $        '. It can be at most', I4 )
 9997 FORMAT( 'Bad ', A, ' parameters: going on to next test case.' )
 9996 FORMAT( 2X, 'Test number ', I2 , ' started on a ', I4, ' x ',
     $        I4, ' process grid.' )
 9995 FORMAT( 2X, '---------------------------------------------------',
     $        '--------------------------' )
 9994 FORMAT( 2X, '     N     IX     JX     MX     NX  IMBX  INBX',
     $        '   MBX   NBX RSRCX CSRCX   INCX' )
 9993 FORMAT( 2X,I6,1X,I6,1X,I6,1X,I6,1X,I6,1X,I5,1X,I5,1X,I5,1X,I5,1X,
     $        I5,1X,I5,1X,I6 )
 9992 FORMAT( 2X, '     N     IY     JY     MY     NY  IMBY  INBY',
     $        '   MBY   NBY RSRCY CSRCY   INCY' )
 9991 FORMAT( 'Not enough memory for this test: going on to',
     $        ' next test case.' )
 9990 FORMAT( 'Not enough memory. Need: ', I12 )
 9988 FORMAT( 2X, 'Test number ', I2, ' completed.' )
 9987 FORMAT( 2X, 'End of Tests.' )
 9986 FORMAT( 2X, 'Tests started.' )
 9985 FORMAT( 2X, '   ***** Operation not supported, error code: ',
     $        I5, ' *****' )
 9984 FORMAT( 2X, '|  ', A, 2X, F13.3, 2X, F13.3, 2X, F13.3, 2X, F13.3 )
 9983 FORMAT( 2X, '            WALL time (s)    WALL Mflops ',
     $        '  CPU time (s)     CPU Mflops' )
*
      STOP
*
*     End of PSBLA1TIM
*
      END
      SUBROUTINE PSBLA1TIMINFO( SUMMRY, NOUT, NMAT, NVAL, MXVAL, NXVAL,
     $                          IMBXVAL, MBXVAL, INBXVAL, NBXVAL,
     $                          RSCXVAL, CSCXVAL, IXVAL, JXVAL,
     $                          INCXVAL, MYVAL, NYVAL, IMBYVAL, MBYVAL,
     $                          INBYVAL, NBYVAL, RSCYVAL, CSCYVAL,
     $                          IYVAL, JYVAL, INCYVAL, LDVAL, NGRIDS,
     $                          PVAL, LDPVAL, QVAL, LDQVAL, LTEST, IAM,
     $                          NPROCS, ALPHA, WORK )
*
*  -- PBLAS test routine (version 2.0) --
*     University of Tennessee, Knoxville, Oak Ridge National Laboratory,
*     and University of California, Berkeley.
*     April 1, 1998
*
*     .. Scalar Arguments ..
      INTEGER            IAM, LDPVAL, LDQVAL, LDVAL, NGRIDS, NMAT, NOUT,
     $                   NPROCS
      REAL               ALPHA
*     ..
*     .. Array Arguments ..
      CHARACTER*( * )    SUMMRY
      LOGICAL            LTEST( * )
      INTEGER            CSCXVAL( LDVAL ), CSCYVAL( LDVAL ),
     $                   IMBXVAL( LDVAL ), IMBYVAL( LDVAL ),
     $                   INBXVAL( LDVAL ), INBYVAL( LDVAL ),
     $                   INCXVAL( LDVAL ), INCYVAL( LDVAL ),
     $                   IXVAL( LDVAL ), IYVAL( LDVAL ), JXVAL( LDVAL ),
     $                   JYVAL( LDVAL ), MBXVAL( LDVAL ),
     $                   MBYVAL( LDVAL ), MXVAL( LDVAL ),
     $                   MYVAL( LDVAL ), NBXVAL( LDVAL ),
     $                   NBYVAL( LDVAL ), NVAL( LDVAL ), NXVAL( LDVAL ),
     $                   NYVAL( LDVAL ), PVAL( LDPVAL ), QVAL( LDQVAL ),
     $                   RSCXVAL( LDVAL ), RSCYVAL( LDVAL ), WORK( * )
*     ..
*
*  Purpose
*  =======
*
*  PSBLA1TIMINFO  get  the needed startup information for timing various
*  Level 1 PBLAS routines, and transmits it to all processes.
*
*  Notes
*  =====
*
*  For packing the information we assumed that the length in bytes of an
*  integer is equal to the length in bytes of a real single precision.
*
*  Arguments
*  =========
*
*  SUMMRY  (global output) CHARACTER*(*)
*          On  exit,  SUMMRY  is  the  name of output (summary) file (if
*          any). SUMMRY is only defined for process 0.
*
*  NOUT    (global output) INTEGER
*          On exit, NOUT  specifies the unit number for the output file.
*          When NOUT is 6, output to screen,  when  NOUT is 0, output to
*          stderr. NOUT is only defined for process 0.
*
*  NMAT    (global output) INTEGER
*          On exit,  NMAT  specifies the number of different test cases.
*
*  NVAL    (global output) INTEGER array
*          On entry, NVAL is an array of dimension LDVAL.  On exit, this
*          array contains the values of N to run the code with.
*
*  MXVAL   (global output) INTEGER array
*          On entry, MXVAL is an array of dimension LDVAL. On exit, this
*          array  contains  the values  of  DESCX( M_ )  to run the code
*          with.
*
*  NXVAL   (global output) INTEGER array
*          On entry, NXVAL is an array of dimension LDVAL. On exit, this
*          array  contains  the values  of  DESCX( N_ )  to run the code
*          with.
*
*  IMBXVAL (global output) INTEGER array
*          On entry,  IMBXVAL  is an array of  dimension LDVAL. On exit,
*          this  array  contains  the values of DESCX( IMB_ ) to run the
*          code with.
*
*  MBXVAL  (global output) INTEGER array
*          On entry,  MBXVAL  is an array of  dimension  LDVAL. On exit,
*          this  array  contains  the values of DESCX( MB_ ) to  run the
*          code with.
*
*  INBXVAL (global output) INTEGER array
*          On entry,  INBXVAL  is an array of  dimension LDVAL. On exit,
*          this  array  contains  the values of DESCX( INB_ ) to run the
*          code with.
*
*  NBXVAL  (global output) INTEGER array
*          On entry,  NBXVAL  is an array of  dimension  LDVAL. On exit,
*          this  array  contains  the values of DESCX( NB_ ) to  run the
*          code with.
*
*  RSCXVAL (global output) INTEGER array
*          On entry, RSCXVAL  is an array of  dimension  LDVAL. On exit,
*          this  array  contains the values of DESCX( RSRC_ ) to run the
*          code with.
*
*  CSCXVAL (global output) INTEGER array
*          On entry, CSCXVAL  is an array of  dimension  LDVAL. On exit,
*          this  array  contains the values of DESCX( CSRC_ ) to run the
*          code with.
*
*  IXVAL   (global output) INTEGER array
*          On entry, IXVAL is an array of dimension LDVAL. On exit, this
*          array  contains the values of IX to run the code with.
*
*  JXVAL   (global output) INTEGER array
*          On entry, JXVAL is an array of dimension LDVAL. On exit, this
*          array  contains the values of JX to run the code with.
*
*  INCXVAL (global output) INTEGER array
*          On entry,  INCXVAL  is  an array of dimension LDVAL. On exit,
*          this array  contains the values of INCX to run the code with.
*
*  MYVAL   (global output) INTEGER array
*          On entry, MYVAL is an array of dimension LDVAL. On exit, this
*          array  contains  the values  of  DESCY( M_ )  to run the code
*          with.
*
*  NYVAL   (global output) INTEGER array
*          On entry, NYVAL is an array of dimension LDVAL. On exit, this
*          array  contains  the values  of  DESCY( N_ )  to run the code
*          with.
*
*  IMBYVAL (global output) INTEGER array
*          On entry,  IMBYVAL  is an array of  dimension LDVAL. On exit,
*          this  array  contains  the values of DESCY( IMB_ ) to run the
*          code with.
*
*  MBYVAL  (global output) INTEGER array
*          On entry,  MBYVAL  is an array of  dimension  LDVAL. On exit,
*          this  array  contains  the values of DESCY( MB_ ) to  run the
*          code with.
*
*  INBYVAL (global output) INTEGER array
*          On entry,  INBYVAL  is an array of  dimension LDVAL. On exit,
*          this  array  contains  the values of DESCY( INB_ ) to run the
*          code with.
*
*  NBYVAL  (global output) INTEGER array
*          On entry,  NBYVAL  is an array of  dimension  LDVAL. On exit,
*          this  array  contains  the values of DESCY( NB_ ) to  run the
*          code with.
*
*  RSCYVAL (global output) INTEGER array
*          On entry, RSCYVAL  is an array of  dimension  LDVAL. On exit,
*          this  array  contains the values of DESCY( RSRC_ ) to run the
*          code with.
*
*  CSCYVAL (global output) INTEGER array
*          On entry, CSCYVAL  is an array of  dimension  LDVAL. On exit,
*          this  array  contains the values of DESCY( CSRC_ ) to run the
*          code with.
*
*  IYVAL   (global output) INTEGER array
*          On entry, IYVAL is an array of dimension LDVAL. On exit, this
*          array  contains the values of IY to run the code with.
*
*  JYVAL   (global output) INTEGER array
*          On entry, JYVAL is an array of dimension LDVAL. On exit, this
*          array  contains the values of JY to run the code with.
*
*  INCYVAL (global output) INTEGER array
*          On entry,  INCYVAL  is  an array of dimension LDVAL. On exit,
*          this array  contains the values of INCY to run the code with.
*
*  LDVAL   (global input) INTEGER
*          On entry, LDVAL specifies the maximum number of different va-
*          lues that can be used for  DESCX(:),  IX, JX, INCX, DESCY(:),
*          IY,  JY  and  INCY.  This  is also the maximum number of test
*          cases.
*
*  NGRIDS  (global output) INTEGER
*          On exit, NGRIDS specifies the number of different values that
*          can be used for P and Q.
*
*  PVAL    (global output) INTEGER array
*          On entry, PVAL is an array of dimension LDPVAL. On exit, this
*          array contains the values of P to run the code with.
*
*  LDPVAL  (global input) INTEGER
*          On entry,  LDPVAL  specifies  the maximum number of different
*          values that can be used for P.
*
*  QVAL    (global output) INTEGER array
*          On entry, QVAL is an array of dimension LDQVAL. On exit, this
*          array contains the values of Q to run the code with.
*
*  LDQVAL  (global input) INTEGER
*          On entry,  LDQVAL  specifies  the maximum number of different
*          values that can be used for Q.
*
*  LTEST   (global output) LOGICAL array
*          On entry,  LTEST  is an array of dimension at least eight. On
*          exit, if LTEST( i ) is .TRUE., the i-th Level 1 PBLAS routine
*          will be tested.  See  the  input file for the ordering of the
*          routines.
*
*  IAM     (local input) INTEGER
*          On entry,  IAM  specifies the number of the process executing
*          this routine.
*
*  NPROCS  (global input) INTEGER
*          On entry, NPROCS specifies the total number of processes.
*
*  ALPHA   (global output) REAL
*          On exit, ALPHA specifies the value of alpha to be used in all
*          the test cases.
*
*  WORK    (local workspace) INTEGER array
*          On   entry,   WORK   is   an  array  of  dimension  at  least
*          MAX( 2, 2*NGRIDS+23*NMAT+NSUBS ) with NSUBS = 8.  This  array
*          is  used  to  pack all output arrays in order to send info in
*          one message.
*
*  -- Written on April 1, 1998 by
*     Antoine Petitet, University  of  Tennessee, Knoxville 37996, USA.
*
*  =====================================================================
*
*     .. Parameters ..
      INTEGER            NIN, NSUBS
      PARAMETER          ( NIN = 11, NSUBS = 8 )
*     ..
*     .. Local Scalars ..
      LOGICAL            LTESTT
      INTEGER            I, ICTXT, J
*     ..
*     .. Local Arrays ..
      CHARACTER*7        SNAMET
      CHARACTER*79       USRINFO
*     ..
*     .. External Subroutines ..
      EXTERNAL           BLACS_ABORT, BLACS_GET, BLACS_GRIDEXIT,
     $                   BLACS_GRIDINIT, BLACS_SETUP, ICOPY, IGEBR2D,
     $                   IGEBS2D, SGEBR2D, SGEBS2D
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAX, MIN
*     ..
*     .. Common Blocks ..
      CHARACTER*7        SNAMES( NSUBS )
      COMMON             /SNAMEC/SNAMES
*     ..
*     .. Executable Statements ..
*
*
*     Process 0 reads the input data, broadcasts to other processes and
*     writes needed information to NOUT
*
      IF( IAM.EQ.0 ) THEN
*
*        Open file and skip data file header
*
         OPEN( NIN, FILE='PSBLAS1TIM.dat', STATUS='OLD' )
         READ( NIN, FMT = * ) SUMMRY
         SUMMRY = ' '
*
*        Read in user-supplied info about machine type, compiler, etc.
*
         READ( NIN, FMT = 9999 ) USRINFO
*
*        Read name and unit number for summary output file
*
         READ( NIN, FMT = * ) SUMMRY
         READ( NIN, FMT = * ) NOUT
         IF( NOUT.NE.0 .AND. NOUT.NE.6 )
     $      OPEN( NOUT, FILE = SUMMRY, STATUS = 'UNKNOWN' )
*
*        Read and check the parameter values for the tests.
*
*        Get number of grids
*
         READ( NIN, FMT = * ) NGRIDS
         IF( NGRIDS.LT.1 .OR. NGRIDS.GT.LDPVAL ) THEN
            WRITE( NOUT, FMT = 9998 ) 'Grids', LDPVAL
            GO TO 100
         ELSE IF( NGRIDS.GT.LDQVAL ) THEN
            WRITE( NOUT, FMT = 9998 ) 'Grids', LDQVAL
            GO TO 100
         END IF
*
*        Get values of P and Q
*
         READ( NIN, FMT = * ) ( PVAL( I ), I = 1, NGRIDS )
         READ( NIN, FMT = * ) ( QVAL( I ), I = 1, NGRIDS )
*
*        Read ALPHA
*
         READ( NIN, FMT = * ) ALPHA
*
*        Read number of tests.
*
         READ( NIN, FMT = * ) NMAT
         IF( NMAT.LT.1 .OR. NMAT.GT.LDVAL ) THEN
            WRITE( NOUT, FMT = 9998 ) 'Tests', LDVAL
            GO TO 100
         END IF
*
*        Read in input data into arrays.
*
         READ( NIN, FMT = * ) ( NVAL   ( I ), I = 1, NMAT )
         READ( NIN, FMT = * ) ( MXVAL  ( I ), I = 1, NMAT )
         READ( NIN, FMT = * ) ( NXVAL  ( I ), I = 1, NMAT )
         READ( NIN, FMT = * ) ( IMBXVAL( I ), I = 1, NMAT )
         READ( NIN, FMT = * ) ( INBXVAL( I ), I = 1, NMAT )
         READ( NIN, FMT = * ) ( MBXVAL ( I ), I = 1, NMAT )
         READ( NIN, FMT = * ) ( NBXVAL ( I ), I = 1, NMAT )
         READ( NIN, FMT = * ) ( RSCXVAL( I ), I = 1, NMAT )
         READ( NIN, FMT = * ) ( CSCXVAL( I ), I = 1, NMAT )
         READ( NIN, FMT = * ) ( IXVAL  ( I ), I = 1, NMAT )
         READ( NIN, FMT = * ) ( JXVAL  ( I ), I = 1, NMAT )
         READ( NIN, FMT = * ) ( INCXVAL( I ), I = 1, NMAT )
         READ( NIN, FMT = * ) ( MYVAL  ( I ), I = 1, NMAT )
         READ( NIN, FMT = * ) ( NYVAL  ( I ), I = 1, NMAT )
         READ( NIN, FMT = * ) ( IMBYVAL( I ), I = 1, NMAT )
         READ( NIN, FMT = * ) ( INBYVAL( I ), I = 1, NMAT )
         READ( NIN, FMT = * ) ( MBYVAL ( I ), I = 1, NMAT )
         READ( NIN, FMT = * ) ( NBYVAL ( I ), I = 1, NMAT )
         READ( NIN, FMT = * ) ( RSCYVAL( I ), I = 1, NMAT )
         READ( NIN, FMT = * ) ( CSCYVAL( I ), I = 1, NMAT )
         READ( NIN, FMT = * ) ( IYVAL  ( I ), I = 1, NMAT )
         READ( NIN, FMT = * ) ( JYVAL  ( I ), I = 1, NMAT )
         READ( NIN, FMT = * ) ( INCYVAL( I ), I = 1, NMAT )
*
*        Read names of subroutines and flags which indicate
*        whether they are to be tested.
*
         DO 10 I = 1, NSUBS
            LTEST( I ) = .FALSE.
   10    CONTINUE
   20    CONTINUE
         READ( NIN, FMT = 9996, END = 50 ) SNAMET, LTESTT
         DO 30 I = 1, NSUBS
            IF( SNAMET.EQ.SNAMES( I ) )
     $         GO TO 40
   30    CONTINUE
*
         WRITE( NOUT, FMT = 9995 )SNAMET
         GO TO 100
*
   40    CONTINUE
         LTEST( I ) = LTESTT
         GO TO 20
*
   50    CONTINUE
*
*        Close input file
*
         CLOSE ( NIN )
*
*        For pvm only: if virtual machine not set up, allocate it and
*        spawn the correct number of processes.
*
         IF( NPROCS.LT.1 ) THEN
            NPROCS = 0
            DO 60 I = 1, NGRIDS
               NPROCS = MAX( NPROCS, PVAL( I )*QVAL( I ) )
   60       CONTINUE
            CALL BLACS_SETUP( IAM, NPROCS )
         END IF
*
*        Temporarily define blacs grid to include all processes so
*        information can be broadcast to all processes
*
         CALL BLACS_GET( -1, 0, ICTXT )
         CALL BLACS_GRIDINIT( ICTXT, 'Row-major', 1, NPROCS )
*
*        Pack information arrays and broadcast
*
         CALL SGEBS2D( ICTXT, 'All', ' ', 1, 1, ALPHA, 1 )
*
         WORK( 1 ) = NGRIDS
         WORK( 2 ) = NMAT
         CALL IGEBS2D( ICTXT, 'All', ' ', 2, 1, WORK, 2 )
*
         I = 1
         CALL ICOPY( NGRIDS, PVAL,     1, WORK( I ), 1 )
         I = I + NGRIDS
         CALL ICOPY( NGRIDS, QVAL,     1, WORK( I ), 1 )
         I = I + NGRIDS
         CALL ICOPY( NMAT,   NVAL,     1, WORK( I ), 1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   MXVAL,    1, WORK( I ), 1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   NXVAL,    1, WORK( I ), 1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   IMBXVAL,  1, WORK( I ), 1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   INBXVAL,  1, WORK( I ), 1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   MBXVAL,   1, WORK( I ), 1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   NBXVAL,   1, WORK( I ), 1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   RSCXVAL,  1, WORK( I ), 1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   CSCXVAL,  1, WORK( I ), 1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   IXVAL,    1, WORK( I ), 1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   JXVAL,    1, WORK( I ), 1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   INCXVAL,  1, WORK( I ), 1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   MYVAL,    1, WORK( I ), 1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   NYVAL,    1, WORK( I ), 1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   IMBYVAL,  1, WORK( I ), 1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   INBYVAL,  1, WORK( I ), 1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   MBYVAL,   1, WORK( I ), 1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   NBYVAL,   1, WORK( I ), 1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   RSCYVAL,  1, WORK( I ), 1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   CSCYVAL,  1, WORK( I ), 1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   IYVAL,    1, WORK( I ), 1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   JYVAL,    1, WORK( I ), 1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   INCYVAL,  1, WORK( I ), 1 )
         I = I + NMAT
*
         DO 70 J = 1, NSUBS
            IF( LTEST( J ) ) THEN
               WORK( I ) = 1
            ELSE
               WORK( I ) = 0
            END IF
            I = I + 1
   70    CONTINUE
         I = I - 1
         CALL IGEBS2D( ICTXT, 'All', ' ', I, 1, WORK, I )
*
*        regurgitate input
*
         WRITE( NOUT, FMT = 9999 )
     $               'Level 1 PBLAS timing program.'
         WRITE( NOUT, FMT = 9999 ) USRINFO
         WRITE( NOUT, FMT = * )
         WRITE( NOUT, FMT = 9999 )
     $               'Timing of the real single precision '//
     $               'Level 1 PBLAS'
         WRITE( NOUT, FMT = * )
         WRITE( NOUT, FMT = 9999 )
     $               'The following parameter values will be used:'
         WRITE( NOUT, FMT = * )
         WRITE( NOUT, FMT = 9993 ) NMAT
         WRITE( NOUT, FMT = 9992 ) NGRIDS
         WRITE( NOUT, FMT = 9990 )
     $               'P', ( PVAL(I), I = 1, MIN(NGRIDS, 5) )
         IF( NGRIDS.GT.5 )
     $      WRITE( NOUT, FMT = 9991 ) ( PVAL(I), I = 6,
     $                                  MIN( 10, NGRIDS ) )
         IF( NGRIDS.GT.10 )
     $      WRITE( NOUT, FMT = 9991 ) ( PVAL(I), I = 11,
     $                                  MIN( 15, NGRIDS ) )
         IF( NGRIDS.GT.15 )
     $      WRITE( NOUT, FMT = 9991 ) ( PVAL(I), I = 16, NGRIDS )
         WRITE( NOUT, FMT = 9990 )
     $               'Q', ( QVAL(I), I = 1, MIN(NGRIDS, 5) )
         IF( NGRIDS.GT.5 )
     $      WRITE( NOUT, FMT = 9991 ) ( QVAL(I), I = 6,
     $                                  MIN( 10, NGRIDS ) )
         IF( NGRIDS.GT.10 )
     $      WRITE( NOUT, FMT = 9991 ) ( QVAL(I), I = 11,
     $                                  MIN( 15, NGRIDS ) )
         IF( NGRIDS.GT.15 )
     $      WRITE( NOUT, FMT = 9991 ) ( QVAL(I), I = 16, NGRIDS )
         WRITE( NOUT, FMT = 9994 ) ALPHA
         IF( LTEST( 1 ) ) THEN
            WRITE( NOUT, FMT = 9989 ) SNAMES( 1 ), ' ... Yes'
         ELSE
            WRITE( NOUT, FMT = 9989 ) SNAMES( 1 ), ' ... No '
         END IF
         DO 80 I = 2, NSUBS
            IF( LTEST( I ) ) THEN
               WRITE( NOUT, FMT = 9988 ) SNAMES( I ), ' ... Yes'
            ELSE
               WRITE( NOUT, FMT = 9988 ) SNAMES( I ), ' ... No '
            END IF
   80    CONTINUE
         WRITE( NOUT, FMT = * )
*
      ELSE
*
*        If in pvm, must participate setting up virtual machine
*
         IF( NPROCS.LT.1 )
     $      CALL BLACS_SETUP( IAM, NPROCS )
*
*        Temporarily define blacs grid to include all processes so
*        information can be broadcast to all processes
*
         CALL BLACS_GET( -1, 0, ICTXT )
         CALL BLACS_GRIDINIT( ICTXT, 'Row-major', 1, NPROCS )
*
         CALL SGEBR2D( ICTXT, 'All', ' ', 1, 1, ALPHA, 1, 0, 0 )
*
         CALL IGEBR2D( ICTXT, 'All', ' ', 2, 1, WORK, 2, 0, 0 )
         NGRIDS = WORK( 1 )
         NMAT   = WORK( 2 )
*
         I = 2*NGRIDS + 23*NMAT + NSUBS
         CALL IGEBR2D( ICTXT, 'All', ' ', I, 1, WORK, I, 0, 0 )
*
         I = 1
         CALL ICOPY( NGRIDS, WORK( I ), 1, PVAL,     1 )
         I = I + NGRIDS
         CALL ICOPY( NGRIDS, WORK( I ), 1, QVAL,     1 )
         I = I + NGRIDS
         CALL ICOPY( NMAT,   WORK( I ), 1, NVAL,     1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   WORK( I ), 1, MXVAL,    1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   WORK( I ), 1, NXVAL,    1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   WORK( I ), 1, IMBXVAL,  1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   WORK( I ), 1, INBXVAL,  1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   WORK( I ), 1, MBXVAL,   1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   WORK( I ), 1, NBXVAL,   1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   WORK( I ), 1, RSCXVAL,  1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   WORK( I ), 1, CSCXVAL,  1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   WORK( I ), 1, IXVAL,    1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   WORK( I ), 1, JXVAL,    1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   WORK( I ), 1, INCXVAL,  1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   WORK( I ), 1, MYVAL,    1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   WORK( I ), 1, NYVAL,    1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   WORK( I ), 1, IMBYVAL,  1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   WORK( I ), 1, INBYVAL,  1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   WORK( I ), 1, MBYVAL,   1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   WORK( I ), 1, NBYVAL,   1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   WORK( I ), 1, RSCYVAL,  1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   WORK( I ), 1, CSCYVAL,  1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   WORK( I ), 1, IYVAL,    1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   WORK( I ), 1, JYVAL,    1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   WORK( I ), 1, INCYVAL,  1 )
         I = I + NMAT
*
         DO 90 J = 1, NSUBS
            IF( WORK( I ).EQ.1 ) THEN
               LTEST( J ) = .TRUE.
            ELSE
               LTEST( J ) = .FALSE.
            END IF
            I = I + 1
   90    CONTINUE
*
      END IF
*
      CALL BLACS_GRIDEXIT( ICTXT )
*
      RETURN
*
  100 WRITE( NOUT, FMT = 9997 )
      CLOSE( NIN )
      IF( NOUT.NE.6 .AND. NOUT.NE.0 )
     $   CLOSE( NOUT )
      CALL BLACS_ABORT( ICTXT, 1 )
*
      STOP
*
 9999 FORMAT( A )
 9998 FORMAT( ' Number of values of ',5A, ' is less than 1 or greater ',
     $        'than ', I2 )
 9997 FORMAT( ' Illegal input in file ',40A,'.  Aborting run.' )
 9996 FORMAT( A7, L2 )
 9995 FORMAT( '  Subprogram name ', A7, ' not recognized',
     $        /' ******* TESTS ABANDONED *******' )
 9994 FORMAT( 2X, 'Alpha                     : ', G16.6 )
 9993 FORMAT( 2X, 'Number of Tests           : ', I6 )
 9992 FORMAT( 2X, 'Number of process grids   : ', I6 )
 9991 FORMAT( 2X, '                          : ', 5I6 )
 9990 FORMAT( 2X, A1, '                         : ', 5I6 )
 9989 FORMAT( 2X, 'Routines to be tested     :      ', A, A8 )
 9988 FORMAT( 2X, '                                 ', A, A8 )
*
*     End of PSBLA1TIMINFO
*
      END