1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688
|
#include "redist.h"
/** $Id: pdtrmr.c,v 1.1.1.1 2000/02/15 18:04:09 susan Exp $
------------------------------------------------------------------------
-- ScaLAPACK routine (version 1.7) --
Oak Ridge National Laboratory, Univ. of Tennessee, and Univ. of
California, Berkeley.
October 31, 1994.
SUBROUTINE PDTRMR2D(UPLO, DIAG, M, N,
$ A, IA, JA, ADESC,
$ B, IB, JB, BDESC,
$ CTXT)
------------------------------------------------------------------------
Purpose
=======
PDTRMR2D copies a submatrix of A on a submatrix of B.
A and B can have different distributions: they can be on different
processor grids, they can have different blocksizes, the beginning
of the area to be copied can be at a different places on A and B.
The parameters can be confusing when the grids of A and B are
partially or completly disjoint, in the case a processor calls
this routines but is either not in the A context or B context, the
ADESC[CTXT] or BDESC[CTXT] must be equal to -1, to ensure the
routine recognise this situation.
To summarize the rule:
- If a processor is in A context, all parameters related to A must be valid.
- If a processor is in B context, all parameters related to B must be valid.
- ADESC[CTXT] and BDESC[CTXT] must be either valid contexts or equal to -1.
- M and N must be valid for everyone.
- other parameters are not examined.
The submatrix to be copied is assumed to be trapezoidal. So only
the upper or the lower part will be copied. The other part is
unchanged.
Notes
=====
A description vector is associated with each 2D block-cyclicly dis-
tributed matrix. This vector stores the information required to
establish the mapping between a matrix entry and its corresponding
process and memory location.
In the following comments, the character _ should be read as
"of the distributed matrix". Let A be a generic term for any 2D
block cyclicly distributed matrix. Its description vector is DESC_A:
NOTATION STORED IN EXPLANATION
--------------- -------------- --------------------------------------
DT_A (global) DESCA( DT_ ) The descriptor type.
CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
the BLACS process grid A is distribu-
ted over. The context itself is glo-
bal, but the handle (the integer
value) may vary.
M_A (global) DESCA( M_ ) The number of rows in the distributed
matrix A.
N_A (global) DESCA( N_ ) The number of columns in the distri-
buted matrix A.
MB_A (global) DESCA( MB_ ) The blocking factor used to distribute
the rows of A.
NB_A (global) DESCA( NB_ ) The blocking factor used to distribute
the columns of A.
RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
row of the matrix A is distributed.
CSRC_A (global) DESCA( CSRC_ ) The process column over which the
first column of A is distributed.
LLD_A (local) DESCA( LLD_ ) The leading dimension of the local
array storing the local blocks of the
distributed matrix A.
LLD_A >= MAX(1,LOCp(M_A)).
Important notice
================
The parameters of the routine have changed in April 1996
There is a new last argument. It must be a context englobing
all processors involved in the initial and final distribution.
Be aware that all processors included in this
context must call the redistribution routine.
Parameters
==========
UPLO (input) CHARACTER*1.
On entry, UPLO specifies whether we should copy the upper
part of the lower part of the defined submatrix:
UPLO = 'U' or 'u' copy the upper triangular part.
UPLO = 'L' or 'l' copy the lower triangular part.
Unchanged on exit.
DIAG (input) CHARACTER*1.
On entry, DIAG specifies whether we should copy the diagonal.
DIAG = 'U' or 'u' do NOT copy the diagonal of the submatrix.
DIAG = 'N' or 'n' DO copy the diagonal of the submatrix.
Unchanged on exit.
M (input) INTEGER.
On entry, M specifies the number of rows of the
submatrix to be copied. M must be at least zero.
Unchanged on exit.
N (input) INTEGER.
On entry, N specifies the number of cols of the submatrix
to be redistributed.rows of B. M must be at least zero.
Unchanged on exit.
A (input) DOUBLE PRECISION
On entry, the source matrix.
Unchanged on exit.
IA,JA (input) INTEGER
On entry,the coordinates of the beginning of the submatrix
of A to copy.
1 <= IA <= M_A - M + 1,1 <= JA <= N_A - N + 1,
Unchanged on exit.
ADESC (input) A description vector (see Notes above)
If the current processor is not part of the context of A
the ADESC[CTXT] must be equal to -1.
B (output) DOUBLE PRECISION
On entry, the destination matrix.
The portion corresponding to the defined submatrix are updated.
IB,JB (input) INTEGER
On entry,the coordinates of the beginning of the submatrix
of B that will be updated.
1 <= IB <= M_B - M + 1,1 <= JB <= N_B - N + 1,
Unchanged on exit.
BDESC (input) B description vector (see Notes above)
For processors not part of the context of B
BDESC[CTXT] must be equal to -1.
CTXT (input) a context englobing at least all processors included
in either A context or B context
Memory requirement :
====================
for the processors belonging to grid 0, one buffer of size block 0
and for the processors belonging to grid 1, also one buffer of size
block 1.
============================================================
Created March 1993 by B. Tourancheau (See sccs for modifications).
Modifications by Loic PRYLLI 1995
============================================================ */
#define static2 static
#if defined(Add_) || defined(f77IsF2C)
#define fortran_mr2d pdtrmr2do_
#define fortran_mr2dnew pdtrmr2d_
#elif defined(UpCase)
#define fortran_mr2dnew PDTRMR2D
#define fortran_mr2d PDTRMR2DO
#define dcopy_ DCOPY
#define dlacpy_ DLACPY
#else
#define fortran_mr2d pdtrmr2do
#define fortran_mr2dnew pdtrmr2d
#define dcopy_ dcopy
#define dlacpy_ dlacpy
#endif
#define Clacpy Cdtrlacpy
void Clacpy();
typedef struct {
int desctype;
int ctxt;
int m;
int n;
int nbrow;
int nbcol;
int sprow;
int spcol;
int lda;
} MDESC;
#define BLOCK_CYCLIC_2D 1
typedef struct {
int gstart;
int len;
} IDESC;
#define SHIFT(row,sprow,nbrow) ((row)-(sprow)+ ((row) >= (sprow) ? 0 : (nbrow)))
#define max(A,B) ((A)>(B)?(A):(B))
#define min(A,B) ((A)>(B)?(B):(A))
#define DIVUP(a,b) ( ((a)-1) /(b)+1)
#define ROUNDUP(a,b) (DIVUP(a,b)*(b))
#ifdef MALLOCDEBUG
#define malloc mymalloc
#define free myfree
#define realloc myrealloc
#endif
/* Cblacs */
extern void Cblacs_pcoord();
extern int Cblacs_pnum();
extern void Csetpvmtids();
extern void Cblacs_get();
extern void Cblacs_pinfo();
extern void Cblacs_gridinfo();
extern void Cblacs_gridinit();
extern void Cblacs_exit();
extern void Cblacs_gridexit();
extern void Cblacs_setup();
extern void Cigebs2d();
extern void Cigebr2d();
extern void Cigesd2d();
extern void Cigerv2d();
extern void Cigsum2d();
extern void Cigamn2d();
extern void Cigamx2d();
extern void Cdgesd2d();
extern void Cdgerv2d();
/* lapack */
void dlacpy_();
/* aux fonctions */
extern int localindice();
extern void *mr2d_malloc();
extern int ppcm();
extern int localsize();
extern int memoryblocksize();
extern int changeorigin();
extern void paramcheck();
/* tools and others function */
#define scanD0 dtrscanD0
#define dispmat dtrdispmat
#define setmemory dtrsetmemory
#define freememory dtrfreememory
#define scan_intervals dtrscan_intervals
extern void scanD0();
extern void dispmat();
extern void setmemory();
extern void freememory();
extern int scan_intervals();
extern void Cpdtrmr2do();
extern void Cpdtrmr2d();
/* some defines for Cpdtrmr2do */
#define SENDBUFF 0
#define RECVBUFF 1
#define SIZEBUFF 2
#if 0
#define DEBUG
#endif
#ifndef DEBUG
#define NDEBUG
#endif
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#define DESCLEN 9
void
fortran_mr2d(uplo, diag, m, n, A, ia, ja, desc_A,
B, ib, jb, desc_B)
char *uplo, *diag;
int *ia, *ib, *ja, *jb, *m, *n;
int desc_A[DESCLEN], desc_B[DESCLEN];
double *A, *B;
{
Cpdtrmr2do(uplo, diag, *m, *n, A, *ia, *ja, (MDESC *) desc_A,
B, *ib, *jb, (MDESC *) desc_B);
return;
}
void
fortran_mr2dnew(uplo, diag, m, n, A, ia, ja, desc_A,
B, ib, jb, desc_B, gcontext)
char *uplo, *diag;
int *ia, *ib, *ja, *jb, *m, *n;
int desc_A[DESCLEN], desc_B[DESCLEN];
double *A, *B;
int *gcontext;
{
Cpdtrmr2d(uplo, diag, *m, *n, A, *ia, *ja, (MDESC *) desc_A,
B, *ib, *jb, (MDESC *) desc_B, *gcontext);
return;
}
static2 void init_chenille();
static2 int inter_len();
static2 int block2buff();
static2 void buff2block();
static2 void gridreshape();
void
Cpdtrmr2do(uplo, diag, m, n,
ptrmyblock, ia, ja, ma,
ptrmynewblock, ib, jb, mb)
char *uplo, *diag;
double *ptrmyblock, *ptrmynewblock;
/* pointers to the memory location of the matrix and the redistributed matrix */
MDESC *ma;
MDESC *mb;
int ia, ja, ib, jb, m, n;
{
int dummy, nprocs;
int gcontext;
/* first we initialize a global grid which serve as a reference to
* communicate from grid a to grid b */
Cblacs_pinfo(&dummy, &nprocs);
Cblacs_get(0, 0, &gcontext);
Cblacs_gridinit(&gcontext, "R", 1, nprocs);
Cpdtrmr2d(uplo, diag, m, n, ptrmyblock, ia, ja, ma,
ptrmynewblock, ib, jb, mb, gcontext);
Cblacs_gridexit(gcontext);
}
#define NBPARAM 20 /* p0,q0,p1,q1, puis ma,na,mba,nba,rowa,cola puis
* idem B puis ia,ja puis ib,jb */
#define MAGIC_MAX 100000000
void
Cpdtrmr2d(uplo, diag, m, n,
ptrmyblock, ia, ja, ma,
ptrmynewblock, ib, jb, mb, globcontext)
char *uplo, *diag;
double *ptrmyblock, *ptrmynewblock;
/* pointers to the memory location of the matrix and the redistributed matrix */
MDESC *ma;
MDESC *mb;
int ia, ja, ib, jb, m, n, globcontext;
{
double *ptrsendbuff, *ptrrecvbuff, *ptrNULL = 0;
double *recvptr;
MDESC newa, newb;
int *proc0, *proc1, *param;
int mypnum, myprow0, mypcol0, myprow1, mypcol1, nprocs;
int i, j;
int nprow, npcol, gcontext;
int recvsize, sendsize;
IDESC *h_inter; /* to store the horizontal intersections */
IDESC *v_inter; /* to store the vertical intersections */
int hinter_nb, vinter_nb; /* number of intrsections in both directions */
int dummy;
int p0, q0, p1, q1;
int *ra, *ca;
/* end of variables */
/* To simplify further calcul we change the matrix indexation from
* 1..m,1..n (fortran) to 0..m-1,0..n-1 */
if (m == 0 || n == 0)
return;
ia -= 1;
ja -= 1;
ib -= 1;
jb -= 1;
Cblacs_gridinfo(globcontext, &nprow, &npcol, &dummy, &mypnum);
gcontext = globcontext;
nprocs = nprow * npcol;
/* if the global context that is given to us has not the shape of a line
* (nprow != 1), create a new context. TODO: to be optimal, we should
* avoid this because it is an uncessary synchronisation */
if (nprow != 1) {
gridreshape(&gcontext);
Cblacs_gridinfo(gcontext, &dummy, &dummy, &dummy, &mypnum);
}
Cblacs_gridinfo(ma->ctxt, &p0, &q0, &myprow0, &mypcol0);
/* compatibility T3D, must check myprow and mypcol are within bounds */
if (myprow0 >= p0 || mypcol0 >= q0)
myprow0 = mypcol0 = -1;
assert((myprow0 < p0 && mypcol0 < q0) || (myprow0 == -1 && mypcol0 == -1));
Cblacs_gridinfo(mb->ctxt, &p1, &q1, &myprow1, &mypcol1);
if (myprow1 >= p1 || mypcol1 >= q1)
myprow1 = mypcol1 = -1;
assert((myprow1 < p1 && mypcol1 < q1) || (myprow1 == -1 && mypcol1 == -1));
/* exchange the missing parameters among the processors: shape of grids and
* location of the processors */
param = (int *) mr2d_malloc(3 * (nprocs * 2 + NBPARAM) * sizeof(int));
ra = param + nprocs * 2 + NBPARAM;
ca = param + (nprocs * 2 + NBPARAM) * 2;
for (i = 0; i < nprocs * 2 + NBPARAM; i++)
param[i] = MAGIC_MAX;
proc0 = param + NBPARAM;
proc1 = param + NBPARAM + nprocs;
/* we calulate proc0 and proc1 that will give the number of a proc in
* respectively a or b in the global context */
if (myprow0 >= 0) {
proc0[myprow0 * q0 + mypcol0] = mypnum;
param[0] = p0;
param[1] = q0;
param[4] = ma->m;
param[5] = ma->n;
param[6] = ma->nbrow;
param[7] = ma->nbcol;
param[8] = ma->sprow;
param[9] = ma->spcol;
param[10] = ia;
param[11] = ja;
}
if (myprow1 >= 0) {
proc1[myprow1 * q1 + mypcol1] = mypnum;
param[2] = p1;
param[3] = q1;
param[12] = mb->m;
param[13] = mb->n;
param[14] = mb->nbrow;
param[15] = mb->nbcol;
param[16] = mb->sprow;
param[17] = mb->spcol;
param[18] = ib;
param[19] = jb;
}
Cigamn2d(gcontext, "All", "H", 2 * nprocs + NBPARAM, 1, param, 2 * nprocs + NBPARAM,
ra, ca, 2 * nprocs + NBPARAM, -1, -1);
newa = *ma;
newb = *mb;
ma = &newa;
mb = &newb;
if (myprow0 == -1) {
p0 = param[0];
q0 = param[1];
ma->m = param[4];
ma->n = param[5];
ma->nbrow = param[6];
ma->nbcol = param[7];
ma->sprow = param[8];
ma->spcol = param[9];
ia = param[10];
ja = param[11];
}
if (myprow1 == -1) {
p1 = param[2];
q1 = param[3];
mb->m = param[12];
mb->n = param[13];
mb->nbrow = param[14];
mb->nbcol = param[15];
mb->sprow = param[16];
mb->spcol = param[17];
ib = param[18];
jb = param[19];
}
for (i = 0; i < NBPARAM; i++) {
if (param[i] == MAGIC_MAX) {
fprintf(stderr, "xxGEMR2D:something wrong in the parameters\n");
exit(1);
}
}
#ifndef NDEBUG
for (i = 0; i < p0 * q0; i++)
assert(proc0[i] >= 0 && proc0[i] < nprocs);
for (i = 0; i < p1 * q1; i++)
assert(proc1[i] >= 0 && proc1[i] < nprocs);
#endif
/* check the validity of the parameters */
paramcheck(ma, ia, ja, m, n, p0, q0, gcontext);
paramcheck(mb, ib, jb, m, n, p1, q1, gcontext);
/* we change the problem so that ia < a->nbrow ... andia + m = a->m ... */
{
int decal;
ia = changeorigin(myprow0, ma->sprow, p0,
ma->nbrow, ia, &decal, &ma->sprow);
ptrmyblock += decal;
ja = changeorigin(mypcol0, ma->spcol, q0,
ma->nbcol, ja, &decal, &ma->spcol);
ptrmyblock += decal * ma->lda;
ma->m = ia + m;
ma->n = ja + n;
ib = changeorigin(myprow1, mb->sprow, p1,
mb->nbrow, ib, &decal, &mb->sprow);
ptrmynewblock += decal;
jb = changeorigin(mypcol1, mb->spcol, q1,
mb->nbcol, jb, &decal, &mb->spcol);
ptrmynewblock += decal * mb->lda;
mb->m = ib + m;
mb->n = jb + n;
if (p0 == 1)
ma->nbrow = ma->m;
if (q0 == 1)
ma->nbcol = ma->n;
if (p1 == 1)
mb->nbrow = mb->m;
if (q1 == 1)
mb->nbcol = mb->n;
#ifndef NDEBUG
paramcheck(ma, ia, ja, m, n, p0, q0, gcontext);
paramcheck(mb, ib, jb, m, n, p1, q1, gcontext);
#endif
}
/* We compute the size of the memory buffer ( we choose the worst case,
* when the buffer sizes == the memory block sizes). */
if (myprow0 >= 0 && mypcol0 >= 0) {
/* Initialize pointer variables */
setmemory(&ptrsendbuff, memoryblocksize(ma));
}; /* if (mypnum < p0 * q0) */
if (myprow1 >= 0 && mypcol1 >= 0) {
/* Initialize pointer variables */
setmemory(&ptrrecvbuff, memoryblocksize(mb));
}; /* if (mypnum < p1 * q1) */
/* allocing room for the tabs, alloc for the worst case,local_n or local_m
* intervals, in fact the worst case should be less, perhaps half that,I
* should think of that one day. */
h_inter = (IDESC *) mr2d_malloc(DIVUP(ma->n, q0 * ma->nbcol) *
ma->nbcol * sizeof(IDESC));
v_inter = (IDESC *) mr2d_malloc(DIVUP(ma->m, p0 * ma->nbrow)
* ma->nbrow * sizeof(IDESC));
/* We go for the scanning of indices. For each processor including mypnum,
* we fill the sendbuff buffer (scanD0(SENDBUFF)) and when it is done send
* it. Then for each processor, we compute the size of message to be
* receive scanD0(SIZEBUFF)), post a receive and then allocate the elements
* of recvbuff the right place (scanD)(RECVBUFF)) */
recvptr = ptrrecvbuff;
{
int tot, myrang, step, sens;
int *sender, *recver;
int mesending, merecving;
tot = max(p0 * q0, p1 * q1);
init_chenille(mypnum, nprocs, p0 * q0, proc0, p1 * q1, proc1,
&sender, &recver, &myrang);
if (myrang == -1)
goto after_comm;
mesending = myprow0 >= 0;
assert(sender[myrang] >= 0 || !mesending);
assert(!mesending || proc0[sender[myrang]] == mypnum);
merecving = myprow1 >= 0;
assert(recver[myrang] >= 0 || !merecving);
assert(!merecving || proc1[recver[myrang]] == mypnum);
step = tot - 1 - myrang;
do {
for (sens = 0; sens < 2; sens++) {
/* be careful here, when we communicating with ourselves, we must
* send first (myrang > step == 0) */
if (mesending && recver[step] >= 0 &&
(sens == 0)) {
i = recver[step] / q1;
j = recver[step] % q1;
vinter_nb = scan_intervals('r', ia, ib, m, ma, mb, p0, p1, myprow0, i,
v_inter);
hinter_nb = scan_intervals('c', ja, jb, n, ma, mb, q0, q1, mypcol0, j,
h_inter);
scanD0(uplo, diag, SENDBUFF, ptrsendbuff, &sendsize,
m, n, ma, ia, ja, p0, q0, mb, ib, jb, p1, q1,
v_inter, vinter_nb, h_inter, hinter_nb,
ptrmyblock);
} /* if (mesending...) { */
if (mesending && recver[step] >= 0 &&
(sens == myrang > step)) {
i = recver[step] / q1;
j = recver[step] % q1;
if (sendsize > 0
&& (step != myrang || !merecving)
) {
Cdgesd2d(gcontext, sendsize, 1, ptrsendbuff, sendsize,
0, proc1[i * q1 + j]);
} /* sendsize > 0 */
} /* if (mesending ... */
if (merecving && sender[step] >= 0 &&
(sens == myrang <= step)) {
i = sender[step] / q0;
j = sender[step] % q0;
vinter_nb = scan_intervals('r', ib, ia, m, mb, ma, p1, p0, myprow1, i,
v_inter);
hinter_nb = scan_intervals('c', jb, ja, n, mb, ma, q1, q0, mypcol1, j,
h_inter);
scanD0(uplo, diag, SIZEBUFF, ptrNULL, &recvsize,
m, n, ma, ia, ja, p0, q0, mb, ib, jb, p1, q1,
v_inter, vinter_nb, h_inter, hinter_nb, ptrNULL);
if (recvsize > 0) {
if (step == myrang && mesending) {
Clacpy(recvsize, 1,
ptrsendbuff, recvsize,
ptrrecvbuff, recvsize);
} else {
Cdgerv2d(gcontext, recvsize, 1, ptrrecvbuff, recvsize,
0, proc0[i * q0 + j]);
}
} /* recvsize > 0 */
} /* if (merecving ...) */
if (merecving && sender[step] >= 0 && sens == 1) {
scanD0(uplo, diag, RECVBUFF, ptrrecvbuff, &recvsize,
m, n, ma, ia, ja, p0, q0, mb, ib, jb, p1, q1,
v_inter, vinter_nb, h_inter, hinter_nb, ptrmynewblock);
} /* if (merecving...) */
} /* for (sens = 0) */
step -= 1;
if (step < 0)
step = tot - 1;
} while (step != tot - 1 - myrang);
after_comm:
free(sender);
} /* { int tot,nr,ns ...} */
/* don't forget to clean up things! */
if (myprow1 >= 0 && mypcol1 >= 0) {
freememory((char *) ptrrecvbuff);
};
if (myprow0 >= 0 && mypcol0 >= 0) {
freememory((char *) ptrsendbuff);
};
if (nprow != 1)
Cblacs_gridexit(gcontext);
free(v_inter);
free(h_inter);
free(param);
}/* distrib */
static2 void
init_chenille(mypnum, nprocs, n0, proc0, n1, proc1, psend, precv, myrang)
int nprocs, mypnum, n0, n1;
int *proc0, *proc1, **psend, **precv, *myrang;
{
int ns, nr, i, tot;
int *sender, *recver, *g0, *g1;
tot = max(n0, n1);
sender = (int *) mr2d_malloc((nprocs + tot) * sizeof(int) * 2);
recver = sender + tot;
*psend = sender;
*precv = recver;
g0 = recver + tot;
g1 = g0 + nprocs;
for (i = 0; i < nprocs; i++) {
g0[i] = -1;
g1[i] = -1;
}
for (i = 0; i < tot; i++) {
sender[i] = -1;
recver[i] = -1;
}
for (i = 0; i < n0; i++)
g0[proc0[i]] = i;
for (i = 0; i < n1; i++)
g1[proc1[i]] = i;
ns = 0;
nr = 0;
*myrang = -1;
for (i = 0; i < nprocs; i++)
if (g0[i] >= 0 && g1[i] >= 0) {
if (i == mypnum)
*myrang = nr;
sender[ns] = g0[i];
ns += 1;
recver[nr] = g1[i];
nr += 1;
assert(ns <= n0 && nr <= n1 && nr == ns);
}
for (i = 0; i < nprocs; i++)
if (g0[i] >= 0 && g1[i] < 0) {
if (i == mypnum)
*myrang = ns;
sender[ns] = g0[i];
ns += 1;
assert(ns <= n0);
}
for (i = 0; i < nprocs; i++)
if (g1[i] >= 0 && g0[i] < 0) {
if (i == mypnum)
*myrang = nr;
recver[nr] = g1[i];
nr += 1;
assert(nr <= n1);
}
}
void
Clacpy(m, n, a, lda, b, ldb)
double *a, *b;
int m, n, lda, ldb;
{
int i, j;
lda -= m;
ldb -= m;
assert(lda >= 0 && ldb >= 0);
for (j = 0; j < n; j++) {
for (i = 0; i < m; i++)
*b++ = *a++;
b += ldb;
a += lda;
}
}
static2 void
gridreshape(ctxtp)
int *ctxtp;
{
int ori, final; /* original context, and new context created, with
* line form */
int nprow, npcol, myrow, mycol;
int *usermap;
int i, j;
ori = *ctxtp;
Cblacs_gridinfo(ori, &nprow, &npcol, &myrow, &mycol);
usermap = mr2d_malloc(sizeof(int) * nprow * npcol);
for (i = 0; i < nprow; i++)
for (j = 0; j < npcol; j++) {
usermap[i + j * nprow] = Cblacs_pnum(ori, i, j);
}
/* Cblacs_get(0, 0, &final); */
Cblacs_get(ori, 10, &final);
Cblacs_gridmap(&final, usermap, 1, 1, nprow * npcol);
*ctxtp = final;
free(usermap);
}
|