File: ddbtf2.f

package info (click to toggle)
scalapack 1.7.4-2
  • links: PTS
  • area: main
  • in suites: etch, etch-m68k
  • size: 34,004 kB
  • ctags: 30,444
  • sloc: fortran: 310,201; ansic: 64,027; makefile: 1,838; sh: 4
file content (174 lines) | stat: -rw-r--r-- 5,221 bytes parent folder | download | duplicates (9)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
      SUBROUTINE DDBTF2( M, N, KL, KU, AB, LDAB, INFO )
*
*     Modified by Andrew J. Cleary in November, 96 from:
*  -- LAPACK auxiliary routine (preliminary version) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     August 6, 1991
*
*
*     .. Scalar Arguments ..
      INTEGER            INFO, KL, KU, LDAB, M, N
*     ..
*     .. Array Arguments ..
      DOUBLE PRECISION     AB( LDAB, * )
*     ..
*
*  Purpose
*  =======
*
*  Ddbtrf computes an LU factorization of a real m-by-n band matrix A
*  without using partial pivoting with row interchanges.
*
*  This is the unblocked version of the algorithm, calling Level 2 BLAS.
*
*  Arguments
*  =========
*
*  M       (input) INTEGER
*          The number of rows of the matrix A.  M >= 0.
*
*  N       (input) INTEGER
*          The number of columns of the matrix A.  N >= 0.
*
*  KL      (input) INTEGER
*          The number of subdiagonals within the band of A.  KL >= 0.
*
*  KU      (input) INTEGER
*          The number of superdiagonals within the band of A.  KU >= 0.
*
*  AB      (input/output) DOUBLE PRECISION   array, dimension (LDAB,N)
*          On entry, the matrix A in band storage, in rows KL+1 to
*          2*KL+KU+1; rows 1 to KL of the array need not be set.
*          The j-th column of A is stored in the j-th column of the
*          array AB as follows:
*          AB(kl+ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(m,j+kl)
*
*          On exit, details of the factorization: U is stored as an
*          upper triangular band matrix with KL+KU superdiagonals in
*          rows 1 to KL+KU+1, and the multipliers used during the
*          factorization are stored in rows KL+KU+2 to 2*KL+KU+1.
*          See below for further details.
*
*  LDAB    (input) INTEGER
*          The leading dimension of the array AB.  LDAB >= 2*KL+KU+1.
*
*  INFO    (output) INTEGER
*          = 0: successful exit
*          < 0: if INFO = -i, the i-th argument had an illegal value
*          > 0: if INFO = +i, U(i,i) is exactly zero. The factorization
*               has been completed, but the factor U is exactly
*               singular, and division by zero will occur if it is used
*               to solve a system of equations.
*
*  Further Details
*  ===============
*
*  The band storage scheme is illustrated by the following example, when
*  M = N = 6, KL = 2, KU = 1:
*
*  On entry:                       On exit:
*
*      *   a12  a23  a34  a45  a56      *   u12  u23  u34  u45  u56
*     a11  a22  a33  a44  a55  a66     u11  u22  u33  u44  u55  u66
*     a21  a32  a43  a54  a65   *      m21  m32  m43  m54  m65   *
*     a31  a42  a53  a64   *    *      m31  m42  m53  m64   *    *
*
*  Array elements marked * are not used by the routine; elements marked
*  + need not be set on entry, but are required by the routine to store
*  elements of U, because of fill-in resulting from the row
*  interchanges.
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ONE, ZERO
      PARAMETER          ( ONE = 1.0D+0 )
      PARAMETER          ( ZERO = 0.0D+0 )
*     ..
*     .. Local Scalars ..
      INTEGER            J, JP, JU, KM, KV
*     ..
*     .. External Functions ..
      INTEGER            ISAMAX
      EXTERNAL           ISAMAX
*     ..
*     .. External Subroutines ..
      EXTERNAL           DGER, DSCAL, DSWAP
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAX, MIN
*     ..
*     .. Executable Statements ..
*
*     KV is the number of superdiagonals in the factor U, allowing for
*     fill-in.
*
      KV = KU
*
*     Test the input parameters.
*
      INFO = 0
*ECA  IF( M.LT.0 ) THEN
*ECA     INFO = -1
*ECA  ELSE IF( N.LT.0 ) THEN
*ECA     INFO = -2
*ECA  ELSE IF( KL.LT.0 ) THEN
*ECA     INFO = -3
*ECA  ELSE IF( KU.LT.0 ) THEN
*ECA     INFO = -4
*ECA  ELSE IF( LDAB.LT.KL+KV+1 ) THEN
*ECA     INFO = -6
*ECA  END IF
*ECA  IF( INFO.NE.0 ) THEN
*ECA     CALL XERBLA( 'DDBTF2', -INFO )
*ECA     RETURN
*ECA  END IF
*
*     Quick return if possible
*
      IF( M.EQ.0 .OR. N.EQ.0 )
     $   RETURN
*
*     Gaussian elimination without partial pivoting
*
*     JU is the index of the last column affected by the current stage
*     of the factorization.
*
      JU = 1
*
      DO 40 J = 1, MIN( M, N )
*
*        Test for singularity. KM is the number of
*        subdiagonal elements in the current column.
*
         KM = MIN( KL, M-J )
         JP = 1
         IF( AB( KV+1, J ).NE.ZERO ) THEN
            JU = MAX( JU, MIN( J+KU, N ) )
*
            IF( KM.GT.0 ) THEN
*
*              Compute multipliers.
*
               CALL DSCAL( KM, ONE / AB( KU+1, J ), AB( KU+2, J ), 1 )
*
*              Update trailing submatrix within the band.
*
               IF( JU.GT.J ) THEN
                  CALL DGER( KM, JU-J, -ONE, AB( KU+2, J ), 1,
     $                       AB( KU, J+1 ), LDAB-1, AB( KU+1, J+1 ),
     $                       LDAB-1 )
               END IF
            END IF
         ELSE
*
            IF( INFO.EQ.0 )
     $         INFO = J
         END IF
   40 CONTINUE
      RETURN
*
*     End of DDBTF2
*
      END