1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
|
SUBROUTINE DLAMSH ( S, LDS, NBULGE, JBLK, H, LDH, N, ULP )
*
* -- ScaLAPACK auxiliary routine (version 1.7) --
* University of Tennessee, Knoxville, Oak Ridge National Laboratory,
* and University of California, Berkeley.
* May 1, 1997
*
* .. Scalar Arguments ..
INTEGER LDS, NBULGE, JBLK, LDH, N
DOUBLE PRECISION ULP
* ..
* .. Array Arguments ..
DOUBLE PRECISION S(LDS,*), H(LDH,*)
* ..
*
* Purpose
* =======
*
* DLAMSH sends multiple shifts through a small (single node) matrix to
* see how consecutive small subdiagonal elements are modified by
* subsequent shifts in an effort to maximize the number of bulges
* that can be sent through.
* DLAMSH should only be called when there are multiple shifts/bulges
* (NBULGE > 1) and the first shift is starting in the middle of an
* unreduced Hessenberg matrix because of two or more consecutive small
* subdiagonal elements.
*
* Arguments
* =========
*
* S (local input/output) DOUBLE PRECISION array, (LDS,*)
* On entry, the matrix of shifts. Only the 2x2 diagonal of S is
* referenced. It is assumed that S has JBLK double shifts
* (size 2).
* On exit, the data is rearranged in the best order for
* applying.
*
* LDS (local input) INTEGER
* On entry, the leading dimension of S. Unchanged on exit.
* 1 < NBULGE <= JBLK <= LDS/2
*
* NBULGE (local input/output) INTEGER
* On entry, the number of bulges to send through H ( >1 ).
* NBULGE should be less than the maximum determined (JBLK).
* 1 < NBULGE <= JBLK <= LDS/2
* On exit, the maximum number of bulges that can be sent
* through.
*
* JBLK (local input) INTEGER
* On entry, the number of shifts determined for S.
* Unchanged on exit.
*
* H (local input/output) DOUBLE PRECISION array (LDH,N)
* On entry, the local matrix to apply the shifts on.
* H should be aligned so that the starting row is 2.
* On exit, the data is destroyed.
*
* LDS (local input) INTEGER
* On entry, the leading dimension of S. Unchanged on exit.
*
* N (local input) INTEGER
* On entry, the size of H. If all the bulges are expected to
* go through, N should be at least 4*NBULGE+2.
* Otherwise, NBULGE may be reduced by this routine.
*
* ULP (local input) DOUBLE PRECISION
* On entry, machine precision
* Unchanged on exit.
*
* Implemented by: G. Henry, May 1, 1997
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ZERO, TEN
PARAMETER ( ZERO = 0.0D+0, TEN = 10.0D+0 )
* ..
* .. Local Scalars ..
INTEGER K, IBULGE, M, NR, J, IVAL, I
DOUBLE PRECISION H44, H33, H43H34, H11, H22, H21, H12, H44S,
$ H33S, V1, V2, V3, H00, H10, TST1, T1, T2, T3,
$ SUM, S1, DVAL
* ..
* .. Local Arrays ..
DOUBLE PRECISION V(3)
* ..
* .. External Subroutines ..
EXTERNAL DLARFG, DCOPY
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX, ABS
* ..
* .. Executable Statements ..
*
M = 2
DO 10 IBULGE = 1, NBULGE
H44 = S(2*JBLK-2*IBULGE+2, 2*JBLK-2*IBULGE+2)
H33 = S(2*JBLK-2*IBULGE+1,2*JBLK-2*IBULGE+1)
H43H34 = S(2*JBLK-2*IBULGE+1,2*JBLK-2*IBULGE+2)*
$ S(2*JBLK-2*IBULGE+2, 2*JBLK-2*IBULGE+1)
H11 = H( M, M )
H22 = H( M+1, M+1 )
H21 = H( M+1, M )
H12 = H( M, M+1 )
H44S = H44 - H11
H33S = H33 - H11
V1 = ( H33S*H44S-H43H34 ) / H21 + H12
V2 = H22 - H11 - H33S - H44S
V3 = H( M+2, M+1 )
S1 = ABS( V1 ) + ABS( V2 ) + ABS( V3 )
V1 = V1 / S1
V2 = V2 / S1
V3 = V3 / S1
V( 1 ) = V1
V( 2 ) = V2
V( 3 ) = V3
H00 = H( M-1, M-1 )
H10 = H( M, M-1 )
TST1 = ABS( V1 )*( ABS( H00 )+ABS( H11 )+ABS( H22 ) )
IF( ABS( H10 )*( ABS( V2 )+ABS( V3 ) ).GT.ULP*TST1 ) THEN
* Find minimum
DVAL = (ABS(H10)*(ABS(V2)+ABS(V3))) / (ULP*TST1)
IVAL = IBULGE
DO 15 I = IBULGE+1, NBULGE
H44 = S(2*JBLK-2*I+2, 2*JBLK-2*I+2)
H33 = S(2*JBLK-2*I+1,2*JBLK-2*I+1)
H43H34 = S(2*JBLK-2*I+1,2*JBLK-2*I+2)*
$ S(2*JBLK-2*I+2, 2*JBLK-2*I+1)
H11 = H( M, M )
H22 = H( M+1, M+1 )
H21 = H( M+1, M )
H12 = H( M, M+1 )
H44S = H44 - H11
H33S = H33 - H11
V1 = ( H33S*H44S-H43H34 ) / H21 + H12
V2 = H22 - H11 - H33S - H44S
V3 = H( M+2, M+1 )
S1 = ABS( V1 ) + ABS( V2 ) + ABS( V3 )
V1 = V1 / S1
V2 = V2 / S1
V3 = V3 / S1
V( 1 ) = V1
V( 2 ) = V2
V( 3 ) = V3
H00 = H( M-1, M-1 )
H10 = H( M, M-1 )
TST1 = ABS( V1 )*( ABS( H00 )+ABS( H11 )+ABS( H22 ) )
IF ( (DVAL.GT.(ABS(H10)*(ABS(V2)+ABS(V3)))/(ULP*TST1))
$ .AND. ( DVAL .GT. 1.D0 ) ) THEN
DVAL = (ABS(H10)*(ABS(V2)+ABS(V3))) / (ULP*TST1)
IVAL = I
END IF
15 CONTINUE
IF ( (DVAL .LT. TEN) .AND. (IVAL .NE. IBULGE) ) THEN
H44 = S(2*JBLK-2*IVAL+2, 2*JBLK-2*IVAL+2)
H33 = S(2*JBLK-2*IVAL+1,2*JBLK-2*IVAL+1)
H43H34 = S(2*JBLK-2*IVAL+1,2*JBLK-2*IVAL+2)
H10 = S(2*JBLK-2*IVAL+2, 2*JBLK-2*IVAL+1)
S(2*JBLK-2*IVAL+2,2*JBLK-2*IVAL+2) =
$ S(2*JBLK-2*IBULGE+2,2*JBLK-2*IBULGE+2)
S(2*JBLK-2*IVAL+1,2*JBLK-2*IVAL+1) =
$ S(2*JBLK-2*IBULGE+1,2*JBLK-2*IBULGE+1)
S(2*JBLK-2*IVAL+1,2*JBLK-2*IVAL+2) =
$ S(2*JBLK-2*IBULGE+1,2*JBLK-2*IBULGE+2)
S(2*JBLK-2*IVAL+2, 2*JBLK-2*IVAL+1) =
$ S(2*JBLK-2*IBULGE+2, 2*JBLK-2*IBULGE+1)
S(2*JBLK-2*IBULGE+2, 2*JBLK-2*IBULGE+2) = H44
S(2*JBLK-2*IBULGE+1,2*JBLK-2*IBULGE+1) = H33
S(2*JBLK-2*IBULGE+1,2*JBLK-2*IBULGE+2) = H43H34
S(2*JBLK-2*IBULGE+2, 2*JBLK-2*IBULGE+1) = H10
END IF
H44 = S(2*JBLK-2*IBULGE+2, 2*JBLK-2*IBULGE+2)
H33 = S(2*JBLK-2*IBULGE+1,2*JBLK-2*IBULGE+1)
H43H34 = S(2*JBLK-2*IBULGE+1,2*JBLK-2*IBULGE+2)*
$ S(2*JBLK-2*IBULGE+2, 2*JBLK-2*IBULGE+1)
H11 = H( M, M )
H22 = H( M+1, M+1 )
H21 = H( M+1, M )
H12 = H( M, M+1 )
H44S = H44 - H11
H33S = H33 - H11
V1 = ( H33S*H44S-H43H34 ) / H21 + H12
V2 = H22 - H11 - H33S - H44S
V3 = H( M+2, M+1 )
S1 = ABS( V1 ) + ABS( V2 ) + ABS( V3 )
V1 = V1 / S1
V2 = V2 / S1
V3 = V3 / S1
V( 1 ) = V1
V( 2 ) = V2
V( 3 ) = V3
H00 = H( M-1, M-1 )
H10 = H( M, M-1 )
TST1 = ABS( V1 )*( ABS( H00 )+ABS( H11 )+ABS( H22 ) )
END IF
IF( ABS( H10 )*( ABS( V2 )+ABS( V3 ) ).GT.TEN*ULP*TST1 ) THEN
* IBULGE better not be 1 here or we have a bug!
NBULGE = MAX(IBULGE -1,1)
RETURN
END IF
DO 120 K = M, N - 1
NR = MIN( 3, N-K+1 )
IF( K.GT.M )
$ CALL DCOPY( NR, H( K, K-1 ), 1, V, 1 )
CALL DLARFG( NR, V( 1 ), V( 2 ), 1, T1 )
IF( K.GT.M ) THEN
H( K, K-1 ) = V( 1 )
H( K+1, K-1 ) = ZERO
IF( K.LT.N-1 )
$ H( K+2, K-1 ) = ZERO
ELSE
H( K, K-1 ) = -H( K, K-1 )
END IF
V2 = V( 2 )
T2 = T1*V2
IF( NR.EQ.3 ) THEN
V3 = V( 3 )
T3 = T1*V3
DO 60 J = K, N
SUM = H( K, J ) + V2*H( K+1, J ) + V3*H( K+2, J )
H( K, J ) = H( K, J ) - SUM*T1
H( K+1, J ) = H( K+1, J ) - SUM*T2
H( K+2, J ) = H( K+2, J ) - SUM*T3
60 CONTINUE
DO 70 J = 1, MIN( K+3, N )
SUM = H( J, K ) + V2*H( J, K+1 ) + V3*H( J, K+2 )
H( J, K ) = H( J, K ) - SUM*T1
H( J, K+1 ) = H( J, K+1 ) - SUM*T2
H( J, K+2 ) = H( J, K+2 ) - SUM*T3
70 CONTINUE
END IF
120 CONTINUE
10 CONTINUE
*
RETURN
END
|