1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
|
SUBROUTINE DLAREF( TYPE, A, LDA, WANTZ, Z, LDZ, BLOCK, IROW1,
$ ICOL1, ISTART, ISTOP, ITMP1, ITMP2, LILOZ,
$ LIHIZ, VECS, V2, V3, T1, T2, T3 )
*
* -- ScaLAPACK routine (version 1.7) --
* University of Tennessee, Knoxville, Oak Ridge National Laboratory,
* and University of California, Berkeley.
* December 31, 1998
*
* .. Scalar Arguments ..
LOGICAL BLOCK, WANTZ
CHARACTER TYPE
INTEGER ICOL1, IROW1, ISTART, ISTOP, ITMP1, ITMP2, LDA,
$ LDZ, LIHIZ, LILOZ
DOUBLE PRECISION T1, T2, T3, V2, V3
* ..
* .. Array Arguments ..
DOUBLE PRECISION A( LDA, * ), VECS( * ), Z( LDZ, * )
* ..
*
* Purpose
* =======
*
* DLAREF applies one or several Householder reflectors of size 3
* to one or two matrices (if column is specified) on either their
* rows or columns.
*
* Arguments
* =========
*
* TYPE (global input) CHARACTER*1
* If 'R': Apply reflectors to the rows of the matrix
* (apply from left)
* Otherwise: Apply reflectors to the columns of the matrix
* Unchanged on exit.
*
* A (global input/output) DOUBLE PRECISION array, (LDA,*)
* On entry, the matrix to receive the reflections.
* The updated matrix on exit.
*
* LDA (local input) INTEGER
* On entry, the leading dimension of A. Unchanged on exit.
*
* WANTZ (global input) LOGICAL
* If .TRUE., then apply any column reflections to Z as well.
* If .FALSE., then do no additional work on Z.
*
* Z (global input/output) DOUBLE PRECISION array, (LDZ,*)
* On entry, the second matrix to receive column reflections.
* This is changed only if WANTZ is set.
*
* LDZ (local input) INTEGER
* On entry, the leading dimension of Z. Unchanged on exit.
*
* BLOCK (global input) LOGICAL
* If .TRUE., then apply several reflectors at once and read
* their data from the VECS array.
* If .FALSE., apply the single reflector given by V2, V3,
* T1, T2, and T3.
*
* IROW1 (local input/output) INTEGER
* On entry, the local row element of A.
* Undefined on output.
*
*
* ICOL1 (local input/output) INTEGER
* On entry, the local column element of A.
* Undefined on output.
*
* ISTART (global input) INTEGER
* Specifies the "number" of the first reflector. This is
* used as an index into VECS if BLOCK is set.
* ISTART is ignored if BLOCK is .FALSE..
*
* ISTOP (global input) INTEGER
* Specifies the "number" of the last reflector. This is
* used as an index into VECS if BLOCK is set.
* ISTOP is ignored if BLOCK is .FALSE..
*
* ITMP1 (local input) INTEGER
* Starting range into A. For rows, this is the local
* first column. For columns, this is the local first row.
*
* ITMP2 (local input) INTEGER
* Ending range into A. For rows, this is the local last
* column. For columns, this is the local last row.
*
* LILOZ
* LIHIZ (local input) INTEGER
* These serve the same purpose as ITMP1,ITMP2 but for Z
* when WANTZ is set.
*
* VECS (global input) DOUBLE PRECISION array of size 3*N (matrix
* size)
* This holds the size 3 reflectors one after another and this
* is only accessed when BLOCK is .TRUE.
*
* V2
* V3
* T1
* T2
* T3 (global input/output) DOUBLE PRECISION
* This holds information on a single size 3 Householder
* reflector and is read when BLOCK is .FALSE., and
* overwritten when BLOCK is .TRUE.
*
* Implemented by: G. Henry, November 17, 1996
*
* =====================================================================
*
* .. Local Scalars ..
INTEGER J, K
DOUBLE PRECISION H11, H22, SUM, T12, T13, T22, T23, T32, T33,
$ V22, V23, V32, V33
* ..
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
* ..
* .. Intrinsic Functions ..
INTRINSIC MOD
* ..
* .. Executable Statements ..
*
IF( LSAME( TYPE, 'R' ) ) THEN
IF( BLOCK ) THEN
DO 20 K = ISTART, ISTOP - MOD( ISTOP-ISTART+1, 3 ), 3
V2 = VECS( ( K-1 )*3+1 )
V3 = VECS( ( K-1 )*3+2 )
T1 = VECS( ( K-1 )*3+3 )
V22 = VECS( ( K-1 )*3+4 )
V32 = VECS( ( K-1 )*3+5 )
T12 = VECS( ( K-1 )*3+6 )
V23 = VECS( ( K-1 )*3+7 )
V33 = VECS( ( K-1 )*3+8 )
T13 = VECS( ( K-1 )*3+9 )
T2 = T1*V2
T3 = T1*V3
T22 = T12*V22
T32 = T12*V32
T23 = T13*V23
T33 = T13*V33
DO 10 J = ITMP1, ITMP2
SUM = A( IROW1, J ) + V2*A( IROW1+1, J ) +
$ V3*A( IROW1+2, J )
A( IROW1, J ) = A( IROW1, J ) - SUM*T1
H11 = A( IROW1+1, J ) - SUM*T2
H22 = A( IROW1+2, J ) - SUM*T3
SUM = H11 + V22*H22 + V32*A( IROW1+3, J )
A( IROW1+1, J ) = H11 - SUM*T12
H11 = H22 - SUM*T22
H22 = A( IROW1+3, J ) - SUM*T32
SUM = H11 + V23*H22 + V33*A( IROW1+4, J )
A( IROW1+2, J ) = H11 - SUM*T13
A( IROW1+3, J ) = H22 - SUM*T23
A( IROW1+4, J ) = A( IROW1+4, J ) - SUM*T33
10 CONTINUE
IROW1 = IROW1 + 3
20 CONTINUE
DO 40 K = ISTOP - MOD( ISTOP-ISTART+1, 3 ) + 1, ISTOP
V2 = VECS( ( K-1 )*3+1 )
V3 = VECS( ( K-1 )*3+2 )
T1 = VECS( ( K-1 )*3+3 )
T2 = T1*V2
T3 = T1*V3
DO 30 J = ITMP1, ITMP2
SUM = A( IROW1, J ) + V2*A( IROW1+1, J ) +
$ V3*A( IROW1+2, J )
A( IROW1, J ) = A( IROW1, J ) - SUM*T1
A( IROW1+1, J ) = A( IROW1+1, J ) - SUM*T2
A( IROW1+2, J ) = A( IROW1+2, J ) - SUM*T3
30 CONTINUE
IROW1 = IROW1 + 1
40 CONTINUE
ELSE
DO 50 J = ITMP1, ITMP2
SUM = A( IROW1, J ) + V2*A( IROW1+1, J ) +
$ V3*A( IROW1+2, J )
A( IROW1, J ) = A( IROW1, J ) - SUM*T1
A( IROW1+1, J ) = A( IROW1+1, J ) - SUM*T2
A( IROW1+2, J ) = A( IROW1+2, J ) - SUM*T3
50 CONTINUE
END IF
ELSE
*
* Do column transforms
*
IF( BLOCK ) THEN
DO 80 K = ISTART, ISTOP - MOD( ISTOP-ISTART+1, 3 ), 3
V2 = VECS( ( K-1 )*3+1 )
V3 = VECS( ( K-1 )*3+2 )
T1 = VECS( ( K-1 )*3+3 )
V22 = VECS( ( K-1 )*3+4 )
V32 = VECS( ( K-1 )*3+5 )
T12 = VECS( ( K-1 )*3+6 )
V23 = VECS( ( K-1 )*3+7 )
V33 = VECS( ( K-1 )*3+8 )
T13 = VECS( ( K-1 )*3+9 )
T2 = T1*V2
T3 = T1*V3
T22 = T12*V22
T32 = T12*V32
T23 = T13*V23
T33 = T13*V33
DO 60 J = ITMP1, ITMP2
SUM = A( J, ICOL1 ) + V2*A( J, ICOL1+1 ) +
$ V3*A( J, ICOL1+2 )
A( J, ICOL1 ) = A( J, ICOL1 ) - SUM*T1
H11 = A( J, ICOL1+1 ) - SUM*T2
H22 = A( J, ICOL1+2 ) - SUM*T3
SUM = H11 + V22*H22 + V32*A( J, ICOL1+3 )
A( J, ICOL1+1 ) = H11 - SUM*T12
H11 = H22 - SUM*T22
H22 = A( J, ICOL1+3 ) - SUM*T32
SUM = H11 + V23*H22 + V33*A( J, ICOL1+4 )
A( J, ICOL1+2 ) = H11 - SUM*T13
A( J, ICOL1+3 ) = H22 - SUM*T23
A( J, ICOL1+4 ) = A( J, ICOL1+4 ) - SUM*T33
60 CONTINUE
IF( WANTZ ) THEN
DO 70 J = LILOZ, LIHIZ
SUM = Z( J, ICOL1 ) + V2*Z( J, ICOL1+1 ) +
$ V3*Z( J, ICOL1+2 )
Z( J, ICOL1 ) = Z( J, ICOL1 ) - SUM*T1
H11 = Z( J, ICOL1+1 ) - SUM*T2
H22 = Z( J, ICOL1+2 ) - SUM*T3
SUM = H11 + V22*H22 + V32*Z( J, ICOL1+3 )
Z( J, ICOL1+1 ) = H11 - SUM*T12
H11 = H22 - SUM*T22
H22 = Z( J, ICOL1+3 ) - SUM*T32
SUM = H11 + V23*H22 + V33*Z( J, ICOL1+4 )
Z( J, ICOL1+2 ) = H11 - SUM*T13
Z( J, ICOL1+3 ) = H22 - SUM*T23
Z( J, ICOL1+4 ) = Z( J, ICOL1+4 ) - SUM*T33
70 CONTINUE
END IF
ICOL1 = ICOL1 + 3
80 CONTINUE
DO 110 K = ISTOP - MOD( ISTOP-ISTART+1, 3 ) + 1, ISTOP
V2 = VECS( ( K-1 )*3+1 )
V3 = VECS( ( K-1 )*3+2 )
T1 = VECS( ( K-1 )*3+3 )
T2 = T1*V2
T3 = T1*V3
DO 90 J = ITMP1, ITMP2
SUM = A( J, ICOL1 ) + V2*A( J, ICOL1+1 ) +
$ V3*A( J, ICOL1+2 )
A( J, ICOL1 ) = A( J, ICOL1 ) - SUM*T1
A( J, ICOL1+1 ) = A( J, ICOL1+1 ) - SUM*T2
A( J, ICOL1+2 ) = A( J, ICOL1+2 ) - SUM*T3
90 CONTINUE
IF( WANTZ ) THEN
DO 100 J = LILOZ, LIHIZ
SUM = Z( J, ICOL1 ) + V2*Z( J, ICOL1+1 ) +
$ V3*Z( J, ICOL1+2 )
Z( J, ICOL1 ) = Z( J, ICOL1 ) - SUM*T1
Z( J, ICOL1+1 ) = Z( J, ICOL1+1 ) - SUM*T2
Z( J, ICOL1+2 ) = Z( J, ICOL1+2 ) - SUM*T3
100 CONTINUE
END IF
ICOL1 = ICOL1 + 1
110 CONTINUE
ELSE
DO 120 J = ITMP1, ITMP2
SUM = A( J, ICOL1 ) + V2*A( J, ICOL1+1 ) +
$ V3*A( J, ICOL1+2 )
A( J, ICOL1 ) = A( J, ICOL1 ) - SUM*T1
A( J, ICOL1+1 ) = A( J, ICOL1+1 ) - SUM*T2
A( J, ICOL1+2 ) = A( J, ICOL1+2 ) - SUM*T3
120 CONTINUE
END IF
END IF
RETURN
*
* End of DLAREF
*
END
*
|