File: pdstebz.f

package info (click to toggle)
scalapack 1.7.4-2
  • links: PTS
  • area: main
  • in suites: etch, etch-m68k
  • size: 34,004 kB
  • ctags: 30,444
  • sloc: fortran: 310,201; ansic: 64,027; makefile: 1,838; sh: 4
file content (1458 lines) | stat: -rw-r--r-- 52,226 bytes parent folder | download | duplicates (10)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
      SUBROUTINE PDSTEBZ( ICTXT, RANGE, ORDER, N, VL, VU, IL, IU,
     $                    ABSTOL, D, E, M, NSPLIT, W, IBLOCK, ISPLIT,
     $                    WORK, LWORK, IWORK, LIWORK, INFO )
*
*  -- ScaLAPACK routine (version 1.7) --
*     University of Tennessee, Knoxville, Oak Ridge National Laboratory,
*     and University of California, Berkeley.
*     November 15, 1997
*
*     .. Scalar Arguments ..
      CHARACTER          ORDER, RANGE
      INTEGER            ICTXT, IL, INFO, IU, LIWORK, LWORK, M, N,
     $                   NSPLIT
      DOUBLE PRECISION   ABSTOL, VL, VU
*     ..
*     .. Array Arguments ..
      INTEGER            IBLOCK( * ), ISPLIT( * ), IWORK( * )
      DOUBLE PRECISION   D( * ), E( * ), W( * ), WORK( * )
*     ..
*
*  Purpose
*  =======
*
*  PDSTEBZ computes the eigenvalues of a symmetric tridiagonal matrix in
*  parallel. The user may ask for all eigenvalues, all eigenvalues in
*  the interval [VL, VU], or the eigenvalues indexed IL through IU. A
*  static partitioning of work is done at the beginning of PDSTEBZ which
*  results in all processes finding an (almost) equal number of
*  eigenvalues.
*
*  NOTE : It is assumed that the user is on an IEEE machine. If the user
*         is not on an IEEE mchine, set the compile time flag NO_IEEE
*         to 1 (in SLmake.inc). The features of IEEE arithmetic that
*         are needed for the "fast" Sturm Count are : (a) infinity
*         arithmetic (b) the sign bit of a single precision floating
*         point number is assumed be in the 32nd bit position
*         (c) the sign of negative zero.
*
*  See W. Kahan "Accurate Eigenvalues of a Symmetric Tridiagonal
*  Matrix", Report CS41, Computer Science Dept., Stanford
*  University, July 21, 1966.
*
*  Arguments
*  =========
*
*  ICTXT   (global input) INTEGER
*          The BLACS context handle.
*
*  RANGE   (global input) CHARACTER
*          Specifies which eigenvalues are to be found.
*          = 'A': ("All")   all eigenvalues will be found.
*          = 'V': ("Value") all eigenvalues in the interval
*                           [VL, VU] will be found.
*          = 'I': ("Index") the IL-th through IU-th eigenvalues (of the
*                           entire matrix) will be found.
*
*  ORDER   (global input) CHARACTER
*          Specifies the order in which the eigenvalues and their block
*          numbers are stored in W and IBLOCK.
*          = 'B': ("By Block") the eigenvalues will be grouped by
*                              split-off block (see IBLOCK, ISPLIT) and
*                              ordered from smallest to largest within
*                              the block.
*          = 'E': ("Entire matrix")
*                              the eigenvalues for the entire matrix
*                              will be ordered from smallest to largest.
*
*  N       (global input) INTEGER
*          The order of the tridiagonal matrix T.  N >= 0.
*
*  VL      (global input) DOUBLE PRECISION
*          If RANGE='V', the lower bound of the interval to be searched
*          for eigenvalues.  Eigenvalues less than VL will not be
*          returned.  Not referenced if RANGE='A' or 'I'.
*
*  VU      (global input) DOUBLE PRECISION
*          If RANGE='V', the upper bound of the interval to be searched
*          for eigenvalues.  Eigenvalues greater than VU will not be
*          returned.  VU must be greater than VL.  Not referenced if
*          RANGE='A' or 'I'.
*
*  IL      (global input) INTEGER
*          If RANGE='I', the index (from smallest to largest) of the
*          smallest eigenvalue to be returned.  IL must be at least 1.
*          Not referenced if RANGE='A' or 'V'.
*
*  IU      (global input) INTEGER
*          If RANGE='I', the index (from smallest to largest) of the
*          largest eigenvalue to be returned.  IU must be at least IL
*          and no greater than N.  Not referenced if RANGE='A' or 'V'.
*
*  ABSTOL  (global input) DOUBLE PRECISION
*          The absolute tolerance for the eigenvalues.  An eigenvalue
*          (or cluster) is considered to be located if it has been
*          determined to lie in an interval whose width is ABSTOL or
*          less.  If ABSTOL is less than or equal to zero, then ULP*|T|
*          will be used, where |T| means the 1-norm of T.
*          Eigenvalues will be computed most accurately when ABSTOL is
*          set to the underflow threshold DLAMCH('U'), not zero.
*          Note : If eigenvectors are desired later by inverse iteration
*          ( PDSTEIN ), ABSTOL should be set to 2*PDLAMCH('S').
*
*  D       (global input) DOUBLE PRECISION array, dimension (N)
*          The n diagonal elements of the tridiagonal matrix T.  To
*          avoid overflow, the matrix must be scaled so that its largest
*          entry is no greater than overflow**(1/2) * underflow**(1/4)
*          in absolute value, and for greatest accuracy, it should not
*          be much smaller than that.
*
*  E       (global input) DOUBLE PRECISION array, dimension (N-1)
*          The (n-1) off-diagonal elements of the tridiagonal matrix T.
*          To avoid overflow, the matrix must be scaled so that its
*          largest entry is no greater than overflow**(1/2) *
*          underflow**(1/4) in absolute value, and for greatest
*          accuracy, it should not be much smaller than that.
*
*  M       (global output) INTEGER
*          The actual number of eigenvalues found. 0 <= M <= N.
*          (See also the description of INFO=2)
*
*  NSPLIT  (global output) INTEGER
*          The number of diagonal blocks in the matrix T.
*          1 <= NSPLIT <= N.
*
*  W       (global output) DOUBLE PRECISION array, dimension (N)
*          On exit, the first M elements of W contain the eigenvalues
*          on all processes.
*
*  IBLOCK  (global output) INTEGER array, dimension (N)
*          At each row/column j where E(j) is zero or small, the
*          matrix T is considered to split into a block diagonal
*          matrix.  On exit IBLOCK(i) specifies which block (from 1
*          to the number of blocks) the eigenvalue W(i) belongs to.
*          NOTE:  in the (theoretically impossible) event that bisection
*          does not converge for some or all eigenvalues, INFO is set
*          to 1 and the ones for which it did not are identified by a
*          negative block number.
*
*  ISPLIT  (global output) INTEGER array, dimension (N)
*          The splitting points, at which T breaks up into submatrices.
*          The first submatrix consists of rows/columns 1 to ISPLIT(1),
*          the second of rows/columns ISPLIT(1)+1 through ISPLIT(2),
*          etc., and the NSPLIT-th consists of rows/columns
*          ISPLIT(NSPLIT-1)+1 through ISPLIT(NSPLIT)=N.
*          (Only the first NSPLIT elements will actually be used, but
*          since the user cannot know a priori what value NSPLIT will
*          have, N words must be reserved for ISPLIT.)
*
*  WORK    (local workspace) DOUBLE PRECISION array,
*          dimension ( MAX( 5*N, 7 ) )
*
*  LWORK   (local input) INTEGER
*          size of array WORK must be >= MAX( 5*N, 7 )
*          If LWORK = -1, then LWORK is global input and a workspace
*          query is assumed; the routine only calculates the minimum
*          and optimal size for all work arrays. Each of these
*          values is returned in the first entry of the corresponding
*          work array, and no error message is issued by PXERBLA.
*
*  IWORK   (local workspace) INTEGER array, dimension ( MAX( 4*N, 14 ) )
*
*  LIWORK  (local input) INTEGER
*          size of array IWORK must be >= MAX( 4*N, 14, NPROCS )
*          If LIWORK = -1, then LIWORK is global input and a workspace
*          query is assumed; the routine only calculates the minimum
*          and optimal size for all work arrays. Each of these
*          values is returned in the first entry of the corresponding
*          work array, and no error message is issued by PXERBLA.
*
*  INFO    (global output) INTEGER
*          = 0 :  successful exit
*          < 0 :  if INFO = -i, the i-th argument had an illegal value
*          > 0 :  some or all of the eigenvalues failed to converge or
*                 were not computed:
*              = 1 : Bisection failed to converge for some eigenvalues;
*                    these eigenvalues are flagged by a negative block
*                    number.  The effect is that the eigenvalues may not
*                    be as accurate as the absolute and relative
*                    tolerances. This is generally caused by arithmetic
*                    which is less accurate than PDLAMCH says.
*              = 2 : There is a mismatch between the number of
*                    eigenvalues output and the number desired.
*              = 3 : RANGE='i', and the Gershgorin interval initially
*                    used was incorrect. No eigenvalues were computed.
*                    Probable cause: your machine has sloppy floating
*                    point arithmetic.
*                    Cure: Increase the PARAMETER "FUDGE", recompile,
*                    and try again.
*
*  Internal Parameters
*  ===================
*
*  RELFAC  DOUBLE PRECISION, default = 2.0
*          The relative tolerance.  An interval [a,b] lies within
*          "relative tolerance" if  b-a < RELFAC*ulp*max(|a|,|b|),
*          where "ulp" is the machine precision (distance from 1 to
*          the next larger floating point number.)
*
*  FUDGE   DOUBLE PRECISION, default = 2.0
*          A "fudge factor" to widen the Gershgorin intervals.  Ideally,
*          a value of 1 should work, but on machines with sloppy
*          arithmetic, this needs to be larger.  The default for
*          publicly released versions should be large enough to handle
*          the worst machine around.  Note that this has no effect
*          on the accuracy of the solution.
*
*  =====================================================================
*
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, DBLE, ICHAR, MAX, MIN, MOD
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      INTEGER            BLACS_PNUM
      DOUBLE PRECISION   PDLAMCH
      EXTERNAL           LSAME, BLACS_PNUM, PDLAMCH
*     ..
*     .. External Subroutines ..
      EXTERNAL           BLACS_FREEBUFF, BLACS_GET, BLACS_GRIDEXIT,
     $                   BLACS_GRIDINFO, BLACS_GRIDMAP, DGEBR2D,
     $                   DGEBS2D, DGERV2D, DGESD2D, DLASRT2, GLOBCHK,
     $                   IGEBR2D, IGEBS2D, IGERV2D, IGESD2D, IGSUM2D,
     $                   PDLAEBZ, PDLAIECTB, PDLAIECTL, PDLAPDCT,
     $                   PDLASNBT, PXERBLA
*     ..
*     .. Parameters ..
      INTEGER            BLOCK_CYCLIC_2D, DLEN_, DTYPE_, CTXT_, M_, N_,
     $                   MB_, NB_, RSRC_, CSRC_, LLD_
      PARAMETER          ( BLOCK_CYCLIC_2D = 1, DLEN_ = 9, DTYPE_ = 1,
     $                   CTXT_ = 2, M_ = 3, N_ = 4, MB_ = 5, NB_ = 6,
     $                   RSRC_ = 7, CSRC_ = 8, LLD_ = 9 )
      INTEGER            BIGNUM, DESCMULT
      PARAMETER          ( BIGNUM = 10000, DESCMULT = 100 )
      DOUBLE PRECISION   ZERO, ONE, TWO, FIVE, HALF
      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0, TWO = 2.0D+0,
     $                   FIVE = 5.0D+0, HALF = 1.0D+0 / TWO )
      DOUBLE PRECISION   FUDGE, RELFAC
      PARAMETER          ( FUDGE = 2.0D+0, RELFAC = 2.0D+0 )
*     ..
*     .. Local Scalars ..
      LOGICAL            LQUERY
      INTEGER            BLKNO, FOUND, I, IBEGIN, IEFLAG, IEND, IFRST,
     $                   IINFO, ILAST, ILOAD, IM, IMYLOAD, IN, INDRIW1,
     $                   INDRIW2, INDRW1, INDRW2, INXTLOAD, IOFF,
     $                   IORDER, IOUT, IRANGE, IRECV, IREM, ITMP1,
     $                   ITMP2, J, JB, K, LAST, LEXTRA, LREQ, MYCOL,
     $                   MYROW, NALPHA, NBETA, NCMP, NEIGINT, NEXT, NGL,
     $                   NGLOB, NGU, NINT, NPCOL, NPROW, OFFSET,
     $                   ONEDCONTEXT, P, PREV, REXTRA, RREQ, SELF,
     $                   TORECV
      DOUBLE PRECISION   ALPHA, ATOLI, BETA, BNORM, DRECV, DSEND, GL,
     $                   GU, INITVL, INITVU, LSAVE, MID, PIVMIN, RELTOL,
     $                   SAFEMN, TMP1, TMP2, TNORM, ULP
*     ..
*     .. Local Arrays ..
      INTEGER            IDUM( 5, 2 )
*     ..
*     .. Executable Statements ..
*       This is just to keep ftnchek happy
      IF( BLOCK_CYCLIC_2D*CSRC_*CTXT_*DLEN_*DTYPE_*LLD_*MB_*M_*NB_*N_*
     $    RSRC_.LT.0 )RETURN
*
*     Set up process grid
*
      CALL BLACS_GRIDINFO( ICTXT, NPROW, NPCOL, MYROW, MYCOL )
*
      INFO = 0
      M = 0
*
*     Decode RANGE
*
      IF( LSAME( RANGE, 'A' ) ) THEN
         IRANGE = 1
      ELSE IF( LSAME( RANGE, 'V' ) ) THEN
         IRANGE = 2
      ELSE IF( LSAME( RANGE, 'I' ) ) THEN
         IRANGE = 3
      ELSE
         IRANGE = 0
      END IF
*
*     Decode ORDER
*
      IF( LSAME( ORDER, 'B' ) ) THEN
         IORDER = 2
      ELSE IF( LSAME( ORDER, 'E' ) .OR. LSAME( ORDER, 'A' ) ) THEN
         IORDER = 1
      ELSE
         IORDER = 0
      END IF
*
*     Check for Errors
*
      IF( NPROW.EQ.-1 ) THEN
         INFO = -1
      ELSE
*
*     Get machine constants
*
         SAFEMN = PDLAMCH( ICTXT, 'S' )
         ULP = PDLAMCH( ICTXT, 'P' )
         RELTOL = ULP*RELFAC
         IDUM( 1, 1 ) = ICHAR( RANGE )
         IDUM( 1, 2 ) = 2
         IDUM( 2, 1 ) = ICHAR( ORDER )
         IDUM( 2, 2 ) = 3
         IDUM( 3, 1 ) = N
         IDUM( 3, 2 ) = 4
         NGLOB = 5
         IF( IRANGE.EQ.3 ) THEN
            IDUM( 4, 1 ) = IL
            IDUM( 4, 2 ) = 7
            IDUM( 5, 1 ) = IU
            IDUM( 5, 2 ) = 8
         ELSE
            IDUM( 4, 1 ) = 0
            IDUM( 4, 2 ) = 0
            IDUM( 5, 1 ) = 0
            IDUM( 5, 2 ) = 0
         END IF
         IF( MYROW.EQ.0 .AND. MYCOL.EQ.0 ) THEN
            WORK( 1 ) = ABSTOL
            IF( IRANGE.EQ.2 ) THEN
               WORK( 2 ) = VL
               WORK( 3 ) = VU
            ELSE
               WORK( 2 ) = ZERO
               WORK( 3 ) = ZERO
            END IF
            CALL DGEBS2D( ICTXT, 'ALL', ' ', 3, 1, WORK, 3 )
         ELSE
            CALL DGEBR2D( ICTXT, 'ALL', ' ', 3, 1, WORK, 3, 0, 0 )
         END IF
         LQUERY = ( LWORK.EQ.-1 .OR. LIWORK.EQ.-1 )
         IF( INFO.EQ.0 ) THEN
            IF( IRANGE.EQ.0 ) THEN
               INFO = -2
            ELSE IF( IORDER.EQ.0 ) THEN
               INFO = -3
            ELSE IF( IRANGE.EQ.2 .AND. VL.GE.VU ) THEN
               INFO = -5
            ELSE IF( IRANGE.EQ.3 .AND. ( IL.LT.1 .OR. IL.GT.MAX( 1,
     $              N ) ) ) THEN
               INFO = -6
            ELSE IF( IRANGE.EQ.3 .AND. ( IU.LT.MIN( N,
     $              IL ) .OR. IU.GT.N ) ) THEN
               INFO = -7
            ELSE IF( LWORK.LT.MAX( 5*N, 7 ) .AND. .NOT.LQUERY ) THEN
               INFO = -18
            ELSE IF( LIWORK.LT.MAX( 4*N, 14, NPROW*NPCOL ) .AND. .NOT.
     $              LQUERY ) THEN
               INFO = -20
            ELSE IF( IRANGE.EQ.2 .AND. ( ABS( WORK( 2 )-VL ).GT.FIVE*
     $              ULP*ABS( VL ) ) ) THEN
               INFO = -5
            ELSE IF( IRANGE.EQ.2 .AND. ( ABS( WORK( 3 )-VU ).GT.FIVE*
     $              ULP*ABS( VU ) ) ) THEN
               INFO = -6
            ELSE IF( ABS( WORK( 1 )-ABSTOL ).GT.FIVE*ULP*ABS( ABSTOL ) )
     $               THEN
               INFO = -9
            END IF
         END IF
         IF( INFO.EQ.0 )
     $      INFO = BIGNUM
         CALL GLOBCHK( ICTXT, NGLOB, IDUM, 5, IWORK, INFO )
         IF( INFO.EQ.BIGNUM ) THEN
            INFO = 0
         ELSE IF( MOD( INFO, DESCMULT ).EQ.0 ) THEN
            INFO = -INFO / DESCMULT
         ELSE
            INFO = -INFO
         END IF
      END IF
      WORK( 1 ) = DBLE( MAX( 5*N, 7 ) )
      IWORK( 1 ) = MAX( 4*N, 14, NPROW*NPCOL )
*
      IF( INFO.NE.0 ) THEN
         CALL PXERBLA( ICTXT, 'PDSTEBZ', -INFO )
         RETURN
      ELSE IF( LWORK.EQ.-1 .AND. LIWORK.EQ.-1 ) THEN
         RETURN
      END IF
*
*
*     Quick return if possible
*
      IF( N.EQ.0 )
     $   RETURN
*
      K = 1
      DO 20 I = 0, NPROW - 1
         DO 10 J = 0, NPCOL - 1
            IWORK( K ) = BLACS_PNUM( ICTXT, I, J )
            K = K + 1
   10    CONTINUE
   20 CONTINUE
*
      P = NPROW*NPCOL
      NPROW = 1
      NPCOL = P
*
      CALL BLACS_GET( ICTXT, 10, ONEDCONTEXT )
      CALL BLACS_GRIDMAP( ONEDCONTEXT, IWORK, NPROW, NPROW, NPCOL )
      CALL BLACS_GRIDINFO( ONEDCONTEXT, I, J, K, SELF )
*
*     Simplifications:
*
      IF( IRANGE.EQ.3 .AND. IL.EQ.1 .AND. IU.EQ.N )
     $   IRANGE = 1
*
      NEXT = MOD( SELF+1, P )
      PREV = MOD( P+SELF-1, P )
*
*     Compute squares of off-diagonals, splitting points and pivmin.
*     Interleave diagonals and off-diagonals.
*
      INDRW1 = MAX( 2*N, 4 )
      INDRW2 = INDRW1 + 2*N
      INDRIW1 = MAX( 2*N, 8 )
      NSPLIT = 1
      WORK( INDRW1+2*N ) = ZERO
      PIVMIN = ONE
*
      DO 30 I = 1, N - 1
         TMP1 = E( I )**2
         J = 2*I
         WORK( INDRW1+J-1 ) = D( I )
         IF( ABS( D( I+1 )*D( I ) )*ULP**2+SAFEMN.GT.TMP1 ) THEN
            ISPLIT( NSPLIT ) = I
            NSPLIT = NSPLIT + 1
            WORK( INDRW1+J ) = ZERO
         ELSE
            WORK( INDRW1+J ) = TMP1
            PIVMIN = MAX( PIVMIN, TMP1 )
         END IF
   30 CONTINUE
      WORK( INDRW1+2*N-1 ) = D( N )
      ISPLIT( NSPLIT ) = N
      PIVMIN = PIVMIN*SAFEMN
*
*     Compute Gershgorin interval [gl,gu] for entire matrix
*
      GU = D( 1 )
      GL = D( 1 )
      TMP1 = ZERO
*
      DO 40 I = 1, N - 1
         TMP2 = ABS( E( I ) )
         GU = MAX( GU, D( I )+TMP1+TMP2 )
         GL = MIN( GL, D( I )-TMP1-TMP2 )
         TMP1 = TMP2
   40 CONTINUE
      GU = MAX( GU, D( N )+TMP1 )
      GL = MIN( GL, D( N )-TMP1 )
      TNORM = MAX( ABS( GL ), ABS( GU ) )
      GL = GL - FUDGE*TNORM*ULP*N - FUDGE*TWO*PIVMIN
      GU = GU + FUDGE*TNORM*ULP*N + FUDGE*PIVMIN
*
      IF( ABSTOL.LE.ZERO ) THEN
         ATOLI = ULP*TNORM
      ELSE
         ATOLI = ABSTOL
      END IF
*
*     Find out if on an IEEE machine, the sign bit is the
*     32nd bit (Big Endian) or the 64th bit (Little Endian)
*
      IF( IRANGE.EQ.1 .OR. NSPLIT.EQ.1 ) THEN
         CALL PDLASNBT( IEFLAG )
      ELSE
         IEFLAG = 0
      END IF
      LEXTRA = 0
      REXTRA = 0
*
*     Form Initial Interval containing desired eigenvalues
*
      IF( IRANGE.EQ.1 ) THEN
         INITVL = GL
         INITVU = GU
         WORK( 1 ) = GL
         WORK( 2 ) = GU
         IWORK( 1 ) = 0
         IWORK( 2 ) = N
         IFRST = 1
         ILAST = N
      ELSE IF( IRANGE.EQ.2 ) THEN
         IF( VL.GT.GL ) THEN
            IF( IEFLAG.EQ.0 ) THEN
               CALL PDLAPDCT( VL, N, WORK( INDRW1+1 ), PIVMIN, IFRST )
            ELSE IF( IEFLAG.EQ.1 ) THEN
               CALL PDLAIECTB( VL, N, WORK( INDRW1+1 ), IFRST )
            ELSE
               CALL PDLAIECTL( VL, N, WORK( INDRW1+1 ), IFRST )
            END IF
            IFRST = IFRST + 1
            INITVL = VL
         ELSE
            INITVL = GL
            IFRST = 1
         END IF
         IF( VU.LT.GU ) THEN
            IF( IEFLAG.EQ.0 ) THEN
               CALL PDLAPDCT( VU, N, WORK( INDRW1+1 ), PIVMIN, ILAST )
            ELSE IF( IEFLAG.EQ.1 ) THEN
               CALL PDLAIECTB( VU, N, WORK( INDRW1+1 ), ILAST )
            ELSE
               CALL PDLAIECTL( VU, N, WORK( INDRW1+1 ), ILAST )
            END IF
            INITVU = VU
         ELSE
            INITVU = GU
            ILAST = N
         END IF
         WORK( 1 ) = INITVL
         WORK( 2 ) = INITVU
         IWORK( 1 ) = IFRST - 1
         IWORK( 2 ) = ILAST
      ELSE IF( IRANGE.EQ.3 ) THEN
         WORK( 1 ) = GL
         WORK( 2 ) = GU
         IWORK( 1 ) = 0
         IWORK( 2 ) = N
         IWORK( 5 ) = IL - 1
         IWORK( 6 ) = IU
         CALL PDLAEBZ( 0, N, 2, 1, ATOLI, RELTOL, PIVMIN,
     $                 WORK( INDRW1+1 ), IWORK( 5 ), WORK, IWORK, NINT,
     $                 LSAVE, IEFLAG, IINFO )
         IF( IINFO.NE.0 ) THEN
            INFO = 3
            GO TO 230
         END IF
         IF( NINT.GT.1 ) THEN
            IF( IWORK( 5 ).EQ.IL-1 ) THEN
               WORK( 2 ) = WORK( 4 )
               IWORK( 2 ) = IWORK( 4 )
            ELSE
               WORK( 1 ) = WORK( 3 )
               IWORK( 1 ) = IWORK( 3 )
            END IF
            IF( IWORK( 1 ).LT.0 .OR. IWORK( 1 ).GT.IL-1 .OR.
     $          IWORK( 2 ).LE.MIN( IU-1, IWORK( 1 ) ) .OR.
     $          IWORK( 2 ).GT.N ) THEN
               INFO = 3
               GO TO 230
            END IF
         END IF
         LEXTRA = IL - 1 - IWORK( 1 )
         REXTRA = IWORK( 2 ) - IU
         INITVL = WORK( 1 )
         INITVU = WORK( 2 )
         IFRST = IL
         ILAST = IU
      END IF
*     NVL = IFRST - 1
*     NVU = ILAST
      GL = INITVL
      GU = INITVU
      NGL = IWORK( 1 )
      NGU = IWORK( 2 )
      IM = 0
      FOUND = 0
      INDRIW2 = INDRIW1 + NGU - NGL
      IEND = 0
      IF( IFRST.GT.ILAST )
     $   GO TO 100
      IF( IFRST.EQ.1 .AND. ILAST.EQ.N )
     $   IRANGE = 1
*
*     Find Eigenvalues -- Loop Over Blocks
*
      DO 90 JB = 1, NSPLIT
         IOFF = IEND
         IBEGIN = IOFF + 1
         IEND = ISPLIT( JB )
         IN = IEND - IOFF
         IF( JB.NE.1 ) THEN
            IF( IRANGE.NE.1 ) THEN
               FOUND = IM
*
*              Find total number of eigenvalues found thus far
*
               CALL IGSUM2D( ONEDCONTEXT, 'All', ' ', 1, 1, FOUND, 1,
     $                       -1, -1 )
            ELSE
               FOUND = IOFF
            END IF
         END IF
*         IF( SELF.GE.P )
*     $      GO TO 30
         IF( IN.NE.N ) THEN
*
*           Compute Gershgorin interval [gl,gu] for split matrix
*
            GU = D( IBEGIN )
            GL = D( IBEGIN )
            TMP1 = ZERO
*
            DO 50 J = IBEGIN, IEND - 1
               TMP2 = ABS( E( J ) )
               GU = MAX( GU, D( J )+TMP1+TMP2 )
               GL = MIN( GL, D( J )-TMP1-TMP2 )
               TMP1 = TMP2
   50       CONTINUE
*
            GU = MAX( GU, D( IEND )+TMP1 )
            GL = MIN( GL, D( IEND )-TMP1 )
            BNORM = MAX( ABS( GL ), ABS( GU ) )
            GL = GL - FUDGE*BNORM*ULP*IN - FUDGE*PIVMIN
            GU = GU + FUDGE*BNORM*ULP*IN + FUDGE*PIVMIN
*
*           Compute ATOLI for the current submatrix
*
            IF( ABSTOL.LE.ZERO ) THEN
               ATOLI = ULP*BNORM
            ELSE
               ATOLI = ABSTOL
            END IF
*
            IF( GL.LT.INITVL ) THEN
               GL = INITVL
               IF( IEFLAG.EQ.0 ) THEN
                  CALL PDLAPDCT( GL, IN, WORK( INDRW1+2*IOFF+1 ),
     $                           PIVMIN, NGL )
               ELSE IF( IEFLAG.EQ.1 ) THEN
                  CALL PDLAIECTB( GL, IN, WORK( INDRW1+2*IOFF+1 ), NGL )
               ELSE
                  CALL PDLAIECTL( GL, IN, WORK( INDRW1+2*IOFF+1 ), NGL )
               END IF
            ELSE
               NGL = 0
            END IF
            IF( GU.GT.INITVU ) THEN
               GU = INITVU
               IF( IEFLAG.EQ.0 ) THEN
                  CALL PDLAPDCT( GU, IN, WORK( INDRW1+2*IOFF+1 ),
     $                           PIVMIN, NGU )
               ELSE IF( IEFLAG.EQ.1 ) THEN
                  CALL PDLAIECTB( GU, IN, WORK( INDRW1+2*IOFF+1 ), NGU )
               ELSE
                  CALL PDLAIECTL( GU, IN, WORK( INDRW1+2*IOFF+1 ), NGU )
               END IF
            ELSE
               NGU = IN
            END IF
            IF( NGL.GE.NGU )
     $         GO TO 90
            WORK( 1 ) = GL
            WORK( 2 ) = GU
            IWORK( 1 ) = NGL
            IWORK( 2 ) = NGU
         END IF
         OFFSET = FOUND - NGL
         BLKNO = JB
*
*        Do a static partitioning of work so that each process
*        has to find an (almost) equal number of eigenvalues
*
         NCMP = NGU - NGL
         ILOAD = NCMP / P
         IREM = NCMP - ILOAD*P
         ITMP1 = MOD( SELF-FOUND, P )
         IF( ITMP1.LT.0 )
     $      ITMP1 = ITMP1 + P
         IF( ITMP1.LT.IREM ) THEN
            IMYLOAD = ILOAD + 1
         ELSE
            IMYLOAD = ILOAD
         END IF
         IF( IMYLOAD.EQ.0 ) THEN
            GO TO 90
         ELSE IF( IN.EQ.1 ) THEN
            WORK( INDRW2+IM+1 ) = WORK( INDRW1+2*IOFF+1 )
            IWORK( INDRIW1+IM+1 ) = BLKNO
            IWORK( INDRIW2+IM+1 ) = OFFSET + 1
            IM = IM + 1
            GO TO 90
         ELSE
            INXTLOAD = ILOAD
            ITMP2 = MOD( SELF+1-FOUND, P )
            IF( ITMP2.LT.0 )
     $         ITMP2 = ITMP2 + P
            IF( ITMP2.LT.IREM )
     $         INXTLOAD = INXTLOAD + 1
            LREQ = NGL + ITMP1*ILOAD + MIN( IREM, ITMP1 )
            RREQ = LREQ + IMYLOAD
            IWORK( 5 ) = LREQ
            IWORK( 6 ) = RREQ
            TMP1 = WORK( 1 )
            ITMP1 = IWORK( 1 )
            CALL PDLAEBZ( 1, IN, 1, 1, ATOLI, RELTOL, PIVMIN,
     $                    WORK( INDRW1+2*IOFF+1 ), IWORK( 5 ), WORK,
     $                    IWORK, NINT, LSAVE, IEFLAG, IINFO )
            ALPHA = WORK( 1 )
            BETA = WORK( 2 )
            NALPHA = IWORK( 1 )
            NBETA = IWORK( 2 )
            DSEND = BETA
            IF( NBETA.GT.RREQ+INXTLOAD ) THEN
               NBETA = RREQ
               DSEND = ALPHA
            END IF
            LAST = MOD( FOUND+MIN( NGU-NGL, P )-1, P )
            IF( LAST.LT.0 )
     $         LAST = LAST + P
            IF( SELF.NE.LAST ) THEN
               CALL DGESD2D( ONEDCONTEXT, 1, 1, DSEND, 1, 0, NEXT )
               CALL IGESD2D( ONEDCONTEXT, 1, 1, NBETA, 1, 0, NEXT )
            END IF
            IF( SELF.NE.MOD( FOUND, P ) ) THEN
               CALL DGERV2D( ONEDCONTEXT, 1, 1, DRECV, 1, 0, PREV )
               CALL IGERV2D( ONEDCONTEXT, 1, 1, IRECV, 1, 0, PREV )
            ELSE
               DRECV = TMP1
               IRECV = ITMP1
            END IF
            WORK( 1 ) = MAX( LSAVE, DRECV )
            IWORK( 1 ) = IRECV
            ALPHA = MAX( ALPHA, WORK( 1 ) )
            NALPHA = MAX( NALPHA, IRECV )
            IF( BETA-ALPHA.LE.MAX( ATOLI, RELTOL*MAX( ABS( ALPHA ),
     $          ABS( BETA ) ) ) ) THEN
               MID = HALF*( ALPHA+BETA )
               DO 60 J = OFFSET + NALPHA + 1, OFFSET + NBETA
                  WORK( INDRW2+IM+1 ) = MID
                  IWORK( INDRIW1+IM+1 ) = BLKNO
                  IWORK( INDRIW2+IM+1 ) = J
                  IM = IM + 1
   60          CONTINUE
               WORK( 2 ) = ALPHA
               IWORK( 2 ) = NALPHA
            END IF
         END IF
         NEIGINT = IWORK( 2 ) - IWORK( 1 )
         IF( NEIGINT.LE.0 )
     $      GO TO 90
*
*        Call the main computational routine
*
         CALL PDLAEBZ( 2, IN, NEIGINT, 1, ATOLI, RELTOL, PIVMIN,
     $                 WORK( INDRW1+2*IOFF+1 ), IWORK, WORK, IWORK,
     $                 IOUT, LSAVE, IEFLAG, IINFO )
         IF( IINFO.NE.0 ) THEN
            INFO = 1
         END IF
         DO 80 I = 1, IOUT
            MID = HALF*( WORK( 2*I-1 )+WORK( 2*I ) )
            IF( I.GT.IOUT-IINFO )
     $         BLKNO = -BLKNO
            DO 70 J = OFFSET + IWORK( 2*I-1 ) + 1,
     $              OFFSET + IWORK( 2*I )
               WORK( INDRW2+IM+1 ) = MID
               IWORK( INDRIW1+IM+1 ) = BLKNO
               IWORK( INDRIW2+IM+1 ) = J
               IM = IM + 1
   70       CONTINUE
   80    CONTINUE
   90 CONTINUE
*
*     Find out total number of eigenvalues computed
*
  100 CONTINUE
      M = IM
      CALL IGSUM2D( ONEDCONTEXT, 'ALL', ' ', 1, 1, M, 1, -1, -1 )
*
*     Move the eigenvalues found to their final destinations
*
      DO 130 I = 1, P
         IF( SELF.EQ.I-1 ) THEN
            CALL IGEBS2D( ONEDCONTEXT, 'ALL', ' ', 1, 1, IM, 1 )
            IF( IM.NE.0 ) THEN
               CALL IGEBS2D( ONEDCONTEXT, 'ALL', ' ', IM, 1,
     $                       IWORK( INDRIW2+1 ), IM )
               CALL DGEBS2D( ONEDCONTEXT, 'ALL', ' ', IM, 1,
     $                       WORK( INDRW2+1 ), IM )
               CALL IGEBS2D( ONEDCONTEXT, 'ALL', ' ', IM, 1,
     $                       IWORK( INDRIW1+1 ), IM )
               DO 110 J = 1, IM
                  W( IWORK( INDRIW2+J ) ) = WORK( INDRW2+J )
                  IBLOCK( IWORK( INDRIW2+J ) ) = IWORK( INDRIW1+J )
  110          CONTINUE
            END IF
         ELSE
            CALL IGEBR2D( ONEDCONTEXT, 'ALL', ' ', 1, 1, TORECV, 1, 0,
     $                    I-1 )
            IF( TORECV.NE.0 ) THEN
               CALL IGEBR2D( ONEDCONTEXT, 'ALL', ' ', TORECV, 1, IWORK,
     $                       TORECV, 0, I-1 )
               CALL DGEBR2D( ONEDCONTEXT, 'ALL', ' ', TORECV, 1, WORK,
     $                       TORECV, 0, I-1 )
               CALL IGEBR2D( ONEDCONTEXT, 'ALL', ' ', TORECV, 1,
     $                       IWORK( N+1 ), TORECV, 0, I-1 )
               DO 120 J = 1, TORECV
                  W( IWORK( J ) ) = WORK( J )
                  IBLOCK( IWORK( J ) ) = IWORK( N+J )
  120          CONTINUE
            END IF
         END IF
  130 CONTINUE
      IF( NSPLIT.GT.1 .AND. IORDER.EQ.1 ) THEN
*
*        Sort the eigenvalues
*
*
         DO 140 I = 1, M
            IWORK( M+I ) = I
  140    CONTINUE
         CALL DLASRT2( 'I', M, W, IWORK( M+1 ), IINFO )
         DO 150 I = 1, M
            IWORK( I ) = IBLOCK( I )
  150    CONTINUE
         DO 160 I = 1, M
            IBLOCK( I ) = IWORK( IWORK( M+I ) )
  160    CONTINUE
      END IF
      IF( IRANGE.EQ.3 .AND. ( LEXTRA.GT.0 .OR. REXTRA.GT.0 ) ) THEN
*
*        Discard unwanted eigenvalues (occurs only when RANGE = 'I',
*        and eigenvalues IL, and/or IU are in a cluster)
*
         DO 170 I = 1, M
            WORK( I ) = W( I )
            IWORK( I ) = I
            IWORK( M+I ) = I
  170    CONTINUE
         DO 190 I = 1, LEXTRA
            ITMP1 = I
            DO 180 J = I + 1, M
               IF( WORK( J ).LT.WORK( ITMP1 ) ) THEN
                  ITMP1 = J
               END IF
  180       CONTINUE
            TMP1 = WORK( I )
            WORK( I ) = WORK( ITMP1 )
            WORK( ITMP1 ) = TMP1
            IWORK( IWORK( M+ITMP1 ) ) = I
            IWORK( IWORK( M+I ) ) = ITMP1
            ITMP2 = IWORK( M+I )
            IWORK( M+I ) = IWORK( M+ITMP1 )
            IWORK( M+ITMP1 ) = ITMP2
  190    CONTINUE
         DO 210 I = 1, REXTRA
            ITMP1 = M - I + 1
            DO 200 J = M - I, LEXTRA + 1, -1
               IF( WORK( J ).GT.WORK( ITMP1 ) ) THEN
                  ITMP1 = J
               END IF
  200       CONTINUE
            TMP1 = WORK( M-I+1 )
            WORK( M-I+1 ) = WORK( ITMP1 )
            WORK( ITMP1 ) = TMP1
            IWORK( IWORK( M+ITMP1 ) ) = M - I + 1
            IWORK( IWORK( 2*M-I+1 ) ) = ITMP1
            ITMP2 = IWORK( 2*M-I+1 )
            IWORK( 2*M-I+1 ) = IWORK( M+ITMP1 )
            IWORK( M+ITMP1 ) = ITMP2
*           IWORK( ITMP1 ) = 1
  210    CONTINUE
         J = 0
         DO 220 I = 1, M
            IF( IWORK( I ).GT.LEXTRA .AND. IWORK( I ).LE.M-REXTRA ) THEN
               J = J + 1
               W( J ) = WORK( IWORK( I ) )
               IBLOCK( J ) = IBLOCK( I )
            END IF
  220    CONTINUE
         M = M - LEXTRA - REXTRA
      END IF
      IF( M.NE.ILAST-IFRST+1 ) THEN
         INFO = 2
      END IF
*
  230 CONTINUE
      CALL BLACS_FREEBUFF( ONEDCONTEXT, 1 )
      CALL BLACS_GRIDEXIT( ONEDCONTEXT )
      RETURN
*
*     End of PDSTEBZ
*
      END
*
      SUBROUTINE PDLAEBZ( IJOB, N, MMAX, MINP, ABSTOL, RELTOL, PIVMIN,
     $                    D, NVAL, INTVL, INTVLCT, MOUT, LSAVE, IEFLAG,
     $                    INFO )
*
*  -- ScaLAPACK routine (version 1.7) --
*     University of Tennessee, Knoxville, Oak Ridge National Laboratory,
*     and University of California, Berkeley.
*     November 15, 1997
*
*
*     .. Scalar Arguments ..
      INTEGER            IEFLAG, IJOB, INFO, MINP, MMAX, MOUT, N
      DOUBLE PRECISION   ABSTOL, LSAVE, PIVMIN, RELTOL
*     ..
*     .. Array Arguments ..
      INTEGER            INTVLCT( * ), NVAL( * )
      DOUBLE PRECISION   D( * ), INTVL( * )
*     ..
*
*  Purpose
*  =======
*
*  PDLAEBZ contains the iteration loop which computes the eigenvalues
*  contained in the input intervals [ INTVL(2*j-1), INTVL(2*j) ] where
*  j = 1,...,MINP. It uses and computes the function N(w), which is
*  the count of eigenvalues of a symmetric tridiagonal matrix less than
*  or equal to its argument w.
*
*  This is a ScaLAPACK internal subroutine and arguments are not
*  checked for unreasonable values.
*
*  Arguments
*  =========
*
*  IJOB    (input) INTEGER
*          Specifies the computation done by PDLAEBZ
*          = 0 : Find an interval with desired values of N(w) at the
*                endpoints of the interval.
*          = 1 : Find a floating point number contained in the initial
*                interval with a desired value of N(w).
*          = 2 : Perform bisection iteration to find eigenvalues of T.
*
*  N       (input) INTEGER
*          The order of the tridiagonal matrix T. N >= 1.
*
*  MMAX    (input) INTEGER
*          The maximum number of intervals that may be generated. If
*          more than MMAX intervals are generated, then PDLAEBZ will
*          quit with INFO = MMAX+1.
*
*  MINP    (input) INTEGER
*          The initial number of intervals. MINP <= MMAX.
*
*  ABSTOL  (input) DOUBLE PRECISION
*          The minimum (absolute) width of an interval. When an interval
*          is narrower than ABSTOL, or than RELTOL times the larger (in
*          magnitude) endpoint, then it is considered to be sufficiently
*          small, i.e., converged.
*          This must be at least zero.
*
*  RELTOL  (input) DOUBLE PRECISION
*          The minimum relative width of an interval. When an interval
*          is narrower than ABSTOL, or than RELTOL times the larger (in
*          magnitude) endpoint, then it is considered to be sufficiently
*          small, i.e., converged.
*          Note : This should be at least radix*machine epsilon.
*
*  PIVMIN  (input) DOUBLE PRECISION
*          The minimum absolute of a "pivot" in the "paranoid"
*          implementation of the Sturm sequence loop. This must be at
*          least max_j |e(j)^2| *safe_min, and at least safe_min, where
*          safe_min is at least the smallest number that can divide 1.0
*          without overflow.
*          See PDLAPDCT for the "paranoid" implementation of the Sturm
*          sequence loop.
*
*  D       (input) DOUBLE PRECISION array, dimension (2*N - 1)
*          Contains the diagonals and the squares of the off-diagonal
*          elements of the tridiagonal matrix T. These elements are
*          assumed to be interleaved in memory for better cache
*          performance. The diagonal entries of T are in the entries
*          D(1),D(3),...,D(2*N-1), while the squares of the off-diagonal
*          entries are D(2),D(4),...,D(2*N-2). To avoid overflow, the
*          matrix must be scaled so that its largest entry is no greater
*          than overflow**(1/2) * underflow**(1/4) in absolute value,
*          and for greatest accuracy, it should not be much smaller
*          than that.
*
*  NVAL    (input/output) INTEGER array, dimension (4)
*          If IJOB = 0, the desired values of N(w) are in NVAL(1) and
*                       NVAL(2).
*          If IJOB = 1, NVAL(2) is the desired value of N(w).
*          If IJOB = 2, not referenced.
*          This array will, in general, be reordered on output.
*
*  INTVL   (input/output) DOUBLE PRECISION array, dimension (2*MMAX)
*          The endpoints of the intervals. INTVL(2*j-1) is the left
*          endpoint of the j-th interval, and INTVL(2*j) is the right
*          endpoint of the j-th interval. The input intervals will,
*          in general, be modified, split and reordered by the
*          calculation.
*          On input, INTVL contains the MINP input intervals.
*          On output, INTVL contains the converged intervals.
*
*  INTVLCT (input/output) INTEGER array, dimension (2*MMAX)
*          The counts at the endpoints of the intervals. INTVLCT(2*j-1)
*          is the count at the left endpoint of the j-th interval, i.e.,
*          the function value N(INTVL(2*j-1)), and INTVLCT(2*j) is the
*          count at the right endpoint of the j-th interval.
*          On input, INTVLCT contains the counts at the endpoints of
*          the MINP input intervals.
*          On output, INTVLCT contains the counts at the endpoints of
*          the converged intervals.
*
*  MOUT    (output) INTEGER
*          The number of intervals output.
*
*  LSAVE   (output) DOUBLE PRECISION
*          If IJOB = 0 or 2, not referenced.
*          If IJOB = 1, this is the largest floating point number
*          encountered which has count N(w) = NVAL(1).
*
*  IEFLAG  (input) INTEGER
*          A flag which indicates whether N(w) should be speeded up by
*          exploiting IEEE Arithmetic.
*
*  INFO    (output) INTEGER
*          = 0        : All intervals converged.
*          = 1 - MMAX : The last INFO intervals did not converge.
*          = MMAX + 1 : More than MMAX intervals were generated.
*
*  =====================================================================
*
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, INT, LOG, MAX, MIN
*     ..
*     .. External Subroutines ..
      EXTERNAL           PDLAECV, PDLAIECTB, PDLAIECTL, PDLAPDCT
*     ..
*     .. Parameters ..
      DOUBLE PRECISION   ZERO, TWO, HALF
      PARAMETER          ( ZERO = 0.0D+0, TWO = 2.0D+0,
     $                   HALF = 1.0D+0 / TWO )
*     ..
*     .. Local Scalars ..
      INTEGER            I, ITMAX, J, K, KF, KL, KLNEW, L, LCNT, LREQ,
     $                   NALPHA, NBETA, NMID, RCNT, RREQ
      DOUBLE PRECISION   ALPHA, BETA, MID
*     ..
*     .. Executable Statements ..
*
      KF = 1
      KL = MINP + 1
      INFO = 0
      IF( INTVL( 2 )-INTVL( 1 ).LE.ZERO ) THEN
         INFO = MINP
         MOUT = KF
         RETURN
      END IF
      IF( IJOB.EQ.0 ) THEN
*
*        Check if some input intervals have "converged"
*
         CALL PDLAECV( 0, KF, KL, INTVL, INTVLCT, NVAL,
     $                 MAX( ABSTOL, PIVMIN ), RELTOL )
         IF( KF.GE.KL )
     $      GO TO 60
*
*        Compute upper bound on number of iterations needed
*
         ITMAX = INT( ( LOG( INTVL( 2 )-INTVL( 1 )+PIVMIN )-
     $           LOG( PIVMIN ) ) / LOG( TWO ) ) + 2
*
*        Iteration Loop
*
         DO 20 I = 1, ITMAX
            KLNEW = KL
            DO 10 J = KF, KL - 1
               K = 2*J
*
*           Bisect the interval and find the count at that point
*
               MID = HALF*( INTVL( K-1 )+INTVL( K ) )
               IF( IEFLAG.EQ.0 ) THEN
                  CALL PDLAPDCT( MID, N, D, PIVMIN, NMID )
               ELSE IF( IEFLAG.EQ.1 ) THEN
                  CALL PDLAIECTB( MID, N, D, NMID )
               ELSE
                  CALL PDLAIECTL( MID, N, D, NMID )
               END IF
               LREQ = NVAL( K-1 )
               RREQ = NVAL( K )
               IF( KL.EQ.1 )
     $            NMID = MIN( INTVLCT( K ),
     $                   MAX( INTVLCT( K-1 ), NMID ) )
               IF( NMID.LE.NVAL( K-1 ) ) THEN
                  INTVL( K-1 ) = MID
                  INTVLCT( K-1 ) = NMID
               END IF
               IF( NMID.GE.NVAL( K ) ) THEN
                  INTVL( K ) = MID
                  INTVLCT( K ) = NMID
               END IF
               IF( NMID.GT.LREQ .AND. NMID.LT.RREQ ) THEN
                  L = 2*KLNEW
                  INTVL( L-1 ) = MID
                  INTVL( L ) = INTVL( K )
                  INTVLCT( L-1 ) = NVAL( K )
                  INTVLCT( L ) = INTVLCT( K )
                  INTVL( K ) = MID
                  INTVLCT( K ) = NVAL( K-1 )
                  NVAL( L-1 ) = NVAL( K )
                  NVAL( L ) = NVAL( L-1 )
                  NVAL( K ) = NVAL( K-1 )
                  KLNEW = KLNEW + 1
               END IF
   10       CONTINUE
            KL = KLNEW
            CALL PDLAECV( 0, KF, KL, INTVL, INTVLCT, NVAL,
     $                    MAX( ABSTOL, PIVMIN ), RELTOL )
            IF( KF.GE.KL )
     $         GO TO 60
   20    CONTINUE
      ELSE IF( IJOB.EQ.1 ) THEN
         ALPHA = INTVL( 1 )
         BETA = INTVL( 2 )
         NALPHA = INTVLCT( 1 )
         NBETA = INTVLCT( 2 )
         LSAVE = ALPHA
         LREQ = NVAL( 1 )
         RREQ = NVAL( 2 )
   30    CONTINUE
         IF( NBETA.NE.RREQ .AND. BETA-ALPHA.GT.
     $       MAX( ABSTOL, RELTOL*MAX( ABS( ALPHA ), ABS( BETA ) ) ) )
     $        THEN
*
*           Bisect the interval and find the count at that point
*
            MID = HALF*( ALPHA+BETA )
            IF( IEFLAG.EQ.0 ) THEN
               CALL PDLAPDCT( MID, N, D, PIVMIN, NMID )
            ELSE IF( IEFLAG.EQ.1 ) THEN
               CALL PDLAIECTB( MID, N, D, NMID )
            ELSE
               CALL PDLAIECTL( MID, N, D, NMID )
            END IF
            NMID = MIN( NBETA, MAX( NALPHA, NMID ) )
            IF( NMID.GE.RREQ ) THEN
               BETA = MID
               NBETA = NMID
            ELSE
               ALPHA = MID
               NALPHA = NMID
               IF( NMID.EQ.LREQ )
     $            LSAVE = ALPHA
            END IF
            GO TO 30
         END IF
         KL = KF
         INTVL( 1 ) = ALPHA
         INTVL( 2 ) = BETA
         INTVLCT( 1 ) = NALPHA
         INTVLCT( 2 ) = NBETA
      ELSE IF( IJOB.EQ.2 ) THEN
*
*        Check if some input intervals have "converged"
*
         CALL PDLAECV( 1, KF, KL, INTVL, INTVLCT, NVAL,
     $                 MAX( ABSTOL, PIVMIN ), RELTOL )
         IF( KF.GE.KL )
     $      GO TO 60
*
*        Compute upper bound on number of iterations needed
*
         ITMAX = INT( ( LOG( INTVL( 2 )-INTVL( 1 )+PIVMIN )-
     $           LOG( PIVMIN ) ) / LOG( TWO ) ) + 2
*
*        Iteration Loop
*
         DO 50 I = 1, ITMAX
            KLNEW = KL
            DO 40 J = KF, KL - 1
               K = 2*J
               MID = HALF*( INTVL( K-1 )+INTVL( K ) )
               IF( IEFLAG.EQ.0 ) THEN
                  CALL PDLAPDCT( MID, N, D, PIVMIN, NMID )
               ELSE IF( IEFLAG.EQ.1 ) THEN
                  CALL PDLAIECTB( MID, N, D, NMID )
               ELSE
                  CALL PDLAIECTL( MID, N, D, NMID )
               END IF
               LCNT = INTVLCT( K-1 )
               RCNT = INTVLCT( K )
               NMID = MIN( RCNT, MAX( LCNT, NMID ) )
*
*              Form New Interval(s)
*
               IF( NMID.EQ.LCNT ) THEN
                  INTVL( K-1 ) = MID
               ELSE IF( NMID.EQ.RCNT ) THEN
                  INTVL( K ) = MID
               ELSE IF( KLNEW.LT.MMAX+1 ) THEN
                  L = 2*KLNEW
                  INTVL( L-1 ) = MID
                  INTVL( L ) = INTVL( K )
                  INTVLCT( L-1 ) = NMID
                  INTVLCT( L ) = INTVLCT( K )
                  INTVL( K ) = MID
                  INTVLCT( K ) = NMID
                  KLNEW = KLNEW + 1
               ELSE
                  INFO = MMAX + 1
                  RETURN
               END IF
   40       CONTINUE
            KL = KLNEW
            CALL PDLAECV( 1, KF, KL, INTVL, INTVLCT, NVAL,
     $                    MAX( ABSTOL, PIVMIN ), RELTOL )
            IF( KF.GE.KL )
     $         GO TO 60
   50    CONTINUE
      END IF
   60 CONTINUE
      INFO = MAX( KL-KF, 0 )
      MOUT = KL - 1
      RETURN
*
*     End of PDLAEBZ
*
      END
*
*
      SUBROUTINE PDLAECV( IJOB, KF, KL, INTVL, INTVLCT, NVAL, ABSTOL,
     $                    RELTOL )
*
*  -- ScaLAPACK routine (version 1.7) --
*     University of Tennessee, Knoxville, Oak Ridge National Laboratory,
*     and University of California, Berkeley.
*     November 15, 1997
*
*
*     .. Scalar Arguments ..
      INTEGER            IJOB, KF, KL
      DOUBLE PRECISION   ABSTOL, RELTOL
*     ..
*     .. Array Arguments ..
      INTEGER            INTVLCT( * ), NVAL( * )
      DOUBLE PRECISION   INTVL( * )
*     ..
*
*  Purpose
*  =======
*
*  PDLAECV checks if the input intervals [ INTVL(2*i-1), INTVL(2*i) ],
*  i = KF, ... , KL-1, have "converged".
*  PDLAECV modifies KF to be the index of the last converged interval,
*  i.e., on output, all intervals [ INTVL(2*i-1), INTVL(2*i) ], i < KF,
*  have converged. Note that the input intervals may be reordered by
*  PDLAECV.
*
*  This is a SCALAPACK internal procedure and arguments are not checked
*  for unreasonable values.
*
*  Arguments
*  =========
*
*  IJOB    (input) INTEGER
*          Specifies the criterion for "convergence" of an interval.
*          = 0 : When an interval is narrower than ABSTOL, or than
*                RELTOL times the larger (in magnitude) endpoint, then
*                it is considered to have "converged".
*          = 1 : When an interval is narrower than ABSTOL, or than
*                RELTOL times the larger (in magnitude) endpoint, or if
*                the counts at the endpoints are identical to the counts
*                specified by NVAL ( see NVAL ) then the interval is
*                considered to have "converged".
*
*  KF      (input/output) INTEGER
*          On input, the index of the first input interval is 2*KF-1.
*          On output, the index of the last converged interval
*          is 2*KF-3.
*
*  KL      (input) INTEGER
*          The index of the last input interval is 2*KL-3.
*
*  INTVL   (input/output) DOUBLE PRECISION array, dimension (2*(KL-KF))
*          The endpoints of the intervals. INTVL(2*j-1) is the left
*          oendpoint f the j-th interval, and INTVL(2*j) is the right
*          endpoint of the j-th interval. The input intervals will,
*          in general, be reordered on output.
*          On input, INTVL contains the KL-KF input intervals.
*          On output, INTVL contains the converged intervals, 1 thru'
*          KF-1, and the unconverged intervals, KF thru' KL-1.
*
*  INTVLCT (input/output) INTEGER array, dimension (2*(KL-KF))
*          The counts at the endpoints of the intervals. INTVLCT(2*j-1)
*          is the count at the left endpoint of the j-th interval, i.e.,
*          the function value N(INTVL(2*j-1)), and INTVLCT(2*j) is the
*          count at the right endpoint of the j-th interval. This array
*          will, in general, be reordered on output.
*          See the comments in PDLAEBZ for more on the function N(w).
*
*  NVAL    (input/output) INTEGER array, dimension (2*(KL-KF))
*          The desired counts, N(w), at the endpoints of the
*          corresponding intervals.  This array will, in general,
*          be reordered on output.
*
*  ABSTOL  (input) DOUBLE PRECISION
*          The minimum (absolute) width of an interval. When an interval
*          is narrower than ABSTOL, or than RELTOL times the larger (in
*          magnitude) endpoint, then it is considered to be sufficiently
*          small, i.e., converged.
*          Note : This must be at least zero.
*
*  RELTOL  (input) DOUBLE PRECISION
*          The minimum relative width of an interval. When an interval
*          is narrower than ABSTOL, or than RELTOL times the larger (in
*          magnitude) endpoint, then it is considered to be sufficiently
*          small, i.e., converged.
*          Note : This should be at least radix*machine epsilon.
*
*  =====================================================================
*
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, MAX
*     ..
*     .. Local Scalars ..
      LOGICAL            CONDN
      INTEGER            I, ITMP1, ITMP2, J, K, KFNEW
      DOUBLE PRECISION   TMP1, TMP2, TMP3, TMP4
*     ..
*     .. Executable Statements ..
*
      KFNEW = KF
      DO 10 I = KF, KL - 1
         K = 2*I
         TMP3 = INTVL( K-1 )
         TMP4 = INTVL( K )
         TMP1 = ABS( TMP4-TMP3 )
         TMP2 = MAX( ABS( TMP3 ), ABS( TMP4 ) )
         CONDN = TMP1.LT.MAX( ABSTOL, RELTOL*TMP2 )
         IF( IJOB.EQ.0 )
     $      CONDN = CONDN .OR. ( ( INTVLCT( K-1 ).EQ.NVAL( K-1 ) ) .AND.
     $              INTVLCT( K ).EQ.NVAL( K ) )
         IF( CONDN ) THEN
            IF( I.GT.KFNEW ) THEN
*
*              Reorder Intervals
*
               J = 2*KFNEW
               TMP1 = INTVL( K-1 )
               TMP2 = INTVL( K )
               ITMP1 = INTVLCT( K-1 )
               ITMP2 = INTVLCT( K )
               INTVL( K-1 ) = INTVL( J-1 )
               INTVL( K ) = INTVL( J )
               INTVLCT( K-1 ) = INTVLCT( J-1 )
               INTVLCT( K ) = INTVLCT( J )
               INTVL( J-1 ) = TMP1
               INTVL( J ) = TMP2
               INTVLCT( J-1 ) = ITMP1
               INTVLCT( J ) = ITMP2
               IF( IJOB.EQ.0 ) THEN
                  ITMP1 = NVAL( K-1 )
                  NVAL( K-1 ) = NVAL( J-1 )
                  NVAL( J-1 ) = ITMP1
                  ITMP1 = NVAL( K )
                  NVAL( K ) = NVAL( J )
                  NVAL( J ) = ITMP1
               END IF
            END IF
            KFNEW = KFNEW + 1
         END IF
   10 CONTINUE
      KF = KFNEW
      RETURN
*
*     End of PDLAECV
*
      END
*
      SUBROUTINE PDLAPDCT( SIGMA, N, D, PIVMIN, COUNT )
*
*  -- ScaLAPACK routine (version 1.7) --
*     University of Tennessee, Knoxville, Oak Ridge National Laboratory,
*     and University of California, Berkeley.
*     November 15, 1997
*
*
*     .. Scalar Arguments ..
      INTEGER            COUNT, N
      DOUBLE PRECISION   PIVMIN, SIGMA
*     ..
*     .. Array Arguments ..
      DOUBLE PRECISION   D( * )
*     ..
*
*  Purpose
*  =======
*
*  PDLAPDCT counts the number of negative eigenvalues of (T - SIGMA I).
*  This implementation of the Sturm Sequence loop has conditionals in
*  the innermost loop to avoid overflow and determine the sign of a
*  floating point number. PDLAPDCT will be referred to as the "paranoid"
*  implementation of the Sturm Sequence loop.
*
*  This is a SCALAPACK internal procedure and arguments are not checked
*  for unreasonable values.
*
*  Arguments
*  =========
*
*  SIGMA   (input) DOUBLE PRECISION
*          The shift. PDLAPDCT finds the number of eigenvalues of T less
*          than or equal to SIGMA.
*
*  N       (input) INTEGER
*          The order of the tridiagonal matrix T. N >= 1.
*
*  D       (input) DOUBLE PRECISION array, dimension (2*N - 1)
*          Contains the diagonals and the squares of the off-diagonal
*          elements of the tridiagonal matrix T. These elements are
*          assumed to be interleaved in memory for better cache
*          performance. The diagonal entries of T are in the entries
*          D(1),D(3),...,D(2*N-1), while the squares of the off-diagonal
*          entries are D(2),D(4),...,D(2*N-2). To avoid overflow, the
*          matrix must be scaled so that its largest entry is no greater
*          than overflow**(1/2) * underflow**(1/4) in absolute value,
*          and for greatest accuracy, it should not be much smaller
*          than that.
*
*  PIVMIN  (input) DOUBLE PRECISION
*          The minimum absolute of a "pivot" in this "paranoid"
*          implementation of the Sturm sequence loop. This must be at
*          least max_j |e(j)^2| *safe_min, and at least safe_min, where
*          safe_min is at least the smallest number that can divide 1.0
*          without overflow.
*
*  COUNT   (output) INTEGER
*          The count of the number of eigenvalues of T less than or
*          equal to SIGMA.
*
*  =====================================================================
*
*     .. Intrinsic Functions ..
      INTRINSIC          ABS
*     ..
*     .. Parameters ..
      DOUBLE PRECISION   ZERO
      PARAMETER          ( ZERO = 0.0D+0 )
*     ..
*     .. Local Scalars ..
      INTEGER            I
      DOUBLE PRECISION   TMP
*     ..
*     .. Executable Statements ..
*
      TMP = D( 1 ) - SIGMA
      IF( ABS( TMP ).LE.PIVMIN )
     $   TMP = -PIVMIN
      COUNT = 0
      IF( TMP.LE.ZERO )
     $   COUNT = 1
      DO 10 I = 3, 2*N - 1, 2
         TMP = D( I ) - D( I-1 ) / TMP - SIGMA
         IF( ABS( TMP ).LE.PIVMIN )
     $      TMP = -PIVMIN
         IF( TMP.LE.ZERO )
     $      COUNT = COUNT + 1
   10 CONTINUE
*
      RETURN
*
*     End of PDLAPDCT
*
      END