File: pslaconsb.f

package info (click to toggle)
scalapack 1.7.4-2
  • links: PTS
  • area: main
  • in suites: etch, etch-m68k
  • size: 34,004 kB
  • ctags: 30,444
  • sloc: fortran: 310,201; ansic: 64,027; makefile: 1,838; sh: 4
file content (574 lines) | stat: -rw-r--r-- 20,756 bytes parent folder | download | duplicates (12)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
      SUBROUTINE PSLACONSB( A, DESCA, I, L, M, H44, H33, H43H34, BUF,
     $                    LWORK )
*
*  -- ScaLAPACK routine (version 1.7) --
*     University of Tennessee, Knoxville, Oak Ridge National Laboratory,
*     and University of California, Berkeley.
*     May 1, 1997
*
*     .. Scalar Arguments ..
      INTEGER            I, L, LWORK, M
      REAL               H33, H43H34, H44
*     ..
*     .. Array Arguments ..
      INTEGER            DESCA( * )
      REAL               A( * ), BUF( * )
*     ..
*
*  Purpose
*  =======
*
*  PSLACONSB looks for two consecutive small subdiagonal elements by
*     seeing the effect of starting a double shift QR iteration
*     given by H44, H33, & H43H34 and see if this would make a
*     subdiagonal negligible.
*
*  Notes
*  =====
*
*  Each global data object is described by an associated description
*  vector.  This vector stores the information required to establish
*  the mapping between an object element and its corresponding process
*  and memory location.
*
*  Let A be a generic term for any 2D block cyclicly distributed array.
*  Such a global array has an associated description vector DESCA.
*  In the following comments, the character _ should be read as
*  "of the global array".
*
*  NOTATION        STORED IN      EXPLANATION
*  --------------- -------------- --------------------------------------
*  DTYPE_A(global) DESCA( DTYPE_ )The descriptor type.  In this case,
*                                 DTYPE_A = 1.
*  CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
*                                 the BLACS process grid A is distribu-
*                                 ted over. The context itself is glo-
*                                 bal, but the handle (the integer
*                                 value) may vary.
*  M_A    (global) DESCA( M_ )    The number of rows in the global
*                                 array A.
*  N_A    (global) DESCA( N_ )    The number of columns in the global
*                                 array A.
*  MB_A   (global) DESCA( MB_ )   The blocking factor used to distribute
*                                 the rows of the array.
*  NB_A   (global) DESCA( NB_ )   The blocking factor used to distribute
*                                 the columns of the array.
*  RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
*                                 row of the array A is distributed.
*  CSRC_A (global) DESCA( CSRC_ ) The process column over which the
*                                 first column of the array A is
*                                 distributed.
*  LLD_A  (local)  DESCA( LLD_ )  The leading dimension of the local
*                                 array.  LLD_A >= MAX(1,LOCr(M_A)).
*
*  Let K be the number of rows or columns of a distributed matrix,
*  and assume that its process grid has dimension p x q.
*  LOCr( K ) denotes the number of elements of K that a process
*  would receive if K were distributed over the p processes of its
*  process column.
*  Similarly, LOCc( K ) denotes the number of elements of K that a
*  process would receive if K were distributed over the q processes of
*  its process row.
*  The values of LOCr() and LOCc() may be determined via a call to the
*  ScaLAPACK tool function, NUMROC:
*          LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
*          LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).
*  An upper bound for these quantities may be computed by:
*          LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
*          LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A
*
*  Arguments
*  =========
*
*  A       (global input) REAL array, dimension
*          (DESCA(LLD_),*)
*          On entry, the Hessenberg matrix whose tridiagonal part is
*          being scanned.
*          Unchanged on exit.
*
*  DESCA   (global and local input) INTEGER array of dimension DLEN_.
*          The array descriptor for the distributed matrix A.
*
*  I       (global input) INTEGER
*          The global location of the bottom of the unreduced
*          submatrix of A.
*          Unchanged on exit.
*
*  L       (global input) INTEGER
*          The global location of the top of the unreduced submatrix
*          of A.
*          Unchanged on exit.
*
*  M       (global output) INTEGER
*          On exit, this yields the starting location of the QR double
*          shift.  This will satisfy: L <= M  <= I-2.
*
*  H44
*  H33
*  H43H34  (global input) REAL
*          These three values are for the double shift QR iteration.
*
*  BUF     (local output) REAL array of size LWORK.
*
*  LWORK   (global input) INTEGER
*          On exit, LWORK is the size of the work buffer.
*          This must be at least 7*Ceil( Ceil( (I-L)/HBL ) /
*                                        LCM(NPROW,NPCOL) )
*          Here LCM is least common multiple, and NPROWxNPCOL is the
*          logical grid size.
*
*  Logic:
*  ======
*
*        Two consecutive small subdiagonal elements will stall
*        convergence of a double shift if their product is small
*        relatively even if each is not very small.  Thus it is
*        necessary to scan the "tridiagonal portion of the matrix."  In
*        the LAPACK algorithm DLAHQR, a loop of M goes from I-2 down to
*        L and examines
*        H(m,m),H(m+1,m+1),H(m+1,m),H(m,m+1),H(m-1,m-1),H(m,m-1), and
*        H(m+2,m-1).  Since these elements may be on separate
*        processors, the first major loop (10) goes over the tridiagonal
*        and has each node store whatever values of the 7 it has that
*        the node owning H(m,m) does not.  This will occur on a border
*        and can happen in no more than 3 locations per block assuming
*        square blocks.  There are 5 buffers that each node stores these
*        values:  a buffer to send diagonally down and right, a buffer
*        to send up, a buffer to send left, a buffer to send diagonally
*        up and left and a buffer to send right.  Each of these buffers
*        is actually stored in one buffer BUF where BUF(ISTR1+1) starts
*        the first buffer, BUF(ISTR2+1) starts the second, etc..  After
*        the values are stored, if there are any values that a node
*        needs, they will be sent and received.  Then the next major
*        loop passes over the data and searches for two consecutive
*        small subdiagonals.
*
*  Notes:
*
*     This routine does a global maximum and must be called by all
*     processes.
*
*
*  Implemented by:  G. Henry, November 17, 1996
*
*  =====================================================================
*
*     .. Parameters ..
      INTEGER            BLOCK_CYCLIC_2D, CSRC_, CTXT_, DLEN_, DTYPE_,
     $                   LLD_, MB_, M_, NB_, N_, RSRC_
      PARAMETER          ( BLOCK_CYCLIC_2D = 1, DLEN_ = 9, DTYPE_ = 1,
     $                     CTXT_ = 2, M_ = 3, N_ = 4, MB_ = 5, NB_ = 6,
     $                     RSRC_ = 7, CSRC_ = 8, LLD_ = 9 )
*     ..
*     .. Local Scalars ..
      INTEGER            CONTXT, DOWN, HBL, IBUF1, IBUF2, IBUF3, IBUF4,
     $                   IBUF5, ICOL1, II, IRCV1, IRCV2, IRCV3, IRCV4,
     $                   IRCV5, IROW1, ISRC, ISTR1, ISTR2, ISTR3, ISTR4,
     $                   ISTR5, JJ, JSRC, LDA, LEFT, MODKM1, MYCOL,
     $                   MYROW, NPCOL, NPROW, NUM, RIGHT, UP
      REAL               H00, H10, H11, H12, H21, H22, H33S, H44S, S,
     $                   TST1, ULP, V1, V2, V3
*     ..
*     .. External Functions ..
      INTEGER            ILCM
      REAL               PSLAMCH
      EXTERNAL           ILCM, PSLAMCH
*     ..
*     .. External Subroutines ..
      EXTERNAL           BLACS_GRIDINFO, SGERV2D, SGESD2D, IGAMX2D,
     $                   INFOG2L, PXERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, MOD
*     ..
*     .. Executable Statements ..
*
      HBL = DESCA( MB_ )
      CONTXT = DESCA( CTXT_ )
      LDA = DESCA( LLD_ )
      ULP = PSLAMCH( CONTXT, 'PRECISION' )
      CALL BLACS_GRIDINFO( CONTXT, NPROW, NPCOL, MYROW, MYCOL )
      LEFT = MOD( MYCOL+NPCOL-1, NPCOL )
      RIGHT = MOD( MYCOL+1, NPCOL )
      UP = MOD( MYROW+NPROW-1, NPROW )
      DOWN = MOD( MYROW+1, NPROW )
      NUM = NPROW*NPCOL
*
*     BUFFER1 starts at BUF(ISTR1+1) and will contain IBUF1 elements
*     BUFFER2 starts at BUF(ISTR2+1) and will contain IBUF2 elements
*     BUFFER3 starts at BUF(ISTR3+1) and will contain IBUF3 elements
*     BUFFER4 starts at BUF(ISTR4+1) and will contain IBUF4 elements
*     BUFFER5 starts at BUF(ISTR5+1) and will contain IBUF5 elements
*
      ISTR1 = 0
      ISTR2 = ( ( I-L-1 ) / HBL )
      IF( ISTR2*HBL.LT.( I-L-1 ) )
     $   ISTR2 = ISTR2 + 1
      II = ISTR2 / ILCM( NPROW, NPCOL )
      IF( II*ILCM( NPROW, NPCOL ).LT.ISTR2 ) THEN
         ISTR2 = II + 1
      ELSE
         ISTR2 = II
      END IF
      IF( LWORK.LT.7*ISTR2 ) THEN
         CALL PXERBLA( CONTXT, 'PSLACONSB', 10 )
         RETURN
      END IF
      ISTR3 = 3*ISTR2
      ISTR4 = ISTR3 + ISTR2
      ISTR5 = ISTR3 + ISTR3
      CALL INFOG2L( I-2, I-2, DESCA, NPROW, NPCOL, MYROW, MYCOL, IROW1,
     $              ICOL1, II, JJ )
      MODKM1 = MOD( I-3+HBL, HBL )
*
*     Copy our relevant pieces of triadiagonal that we owe into
*     5 buffers to send to whomever owns H(M,M) as M moves diagonally
*     up the tridiagonal
*
      IBUF1 = 0
      IBUF2 = 0
      IBUF3 = 0
      IBUF4 = 0
      IBUF5 = 0
      IRCV1 = 0
      IRCV2 = 0
      IRCV3 = 0
      IRCV4 = 0
      IRCV5 = 0
      DO 10 M = I - 2, L, -1
         IF( ( MODKM1.EQ.0 ) .AND. ( DOWN.EQ.II ) .AND.
     $       ( RIGHT.EQ.JJ ) .AND. ( M.GT.L ) ) THEN
*
*           We must pack H(M-1,M-1) and send it diagonal down
*
            IF( ( DOWN.NE.MYROW ) .OR. ( RIGHT.NE.MYCOL ) ) THEN
               CALL INFOG2L( M-1, M-1, DESCA, NPROW, NPCOL, MYROW,
     $                       MYCOL, IROW1, ICOL1, ISRC, JSRC )
               IBUF1 = IBUF1 + 1
               BUF( ISTR1+IBUF1 ) = A( ( ICOL1-1 )*LDA+IROW1 )
            END IF
         END IF
         IF( ( MODKM1.EQ.0 ) .AND. ( MYROW.EQ.II ) .AND.
     $       ( RIGHT.EQ.JJ ) .AND. ( M.GT.L ) ) THEN
*
*           We must pack H(M  ,M-1) and send it right
*
            IF( NPCOL.GT.1 ) THEN
               CALL INFOG2L( M, M-1, DESCA, NPROW, NPCOL, MYROW, MYCOL,
     $                       IROW1, ICOL1, ISRC, JSRC )
               IBUF5 = IBUF5 + 1
               BUF( ISTR5+IBUF5 ) = A( ( ICOL1-1 )*LDA+IROW1 )
            END IF
         END IF
         IF( ( MODKM1.EQ.HBL-1 ) .AND. ( UP.EQ.II ) .AND.
     $       ( MYCOL.EQ.JJ ) ) THEN
*
*           We must pack H(M+1,M) and send it up
*
            IF( NPROW.GT.1 ) THEN
               CALL INFOG2L( M+1, M, DESCA, NPROW, NPCOL, MYROW, MYCOL,
     $                       IROW1, ICOL1, ISRC, JSRC )
               IBUF2 = IBUF2 + 1
               BUF( ISTR2+IBUF2 ) = A( ( ICOL1-1 )*LDA+IROW1 )
            END IF
         END IF
         IF( ( MODKM1.EQ.HBL-1 ) .AND. ( MYROW.EQ.II ) .AND.
     $       ( LEFT.EQ.JJ ) ) THEN
*
*           We must pack H(M  ,M+1) and send it left
*
            IF( NPCOL.GT.1 ) THEN
               CALL INFOG2L( M, M+1, DESCA, NPROW, NPCOL, MYROW, MYCOL,
     $                       IROW1, ICOL1, ISRC, JSRC )
               IBUF3 = IBUF3 + 1
               BUF( ISTR3+IBUF3 ) = A( ( ICOL1-1 )*LDA+IROW1 )
            END IF
         END IF
         IF( ( MODKM1.EQ.HBL-1 ) .AND. ( UP.EQ.II ) .AND.
     $       ( LEFT.EQ.JJ ) ) THEN
*
*           We must pack H(M+1,M+1) & H(M+2,M+1) and send it
*           diagonally up
*
            IF( ( UP.NE.MYROW ) .OR. ( LEFT.NE.MYCOL ) ) THEN
               CALL INFOG2L( M+1, M+1, DESCA, NPROW, NPCOL, MYROW,
     $                       MYCOL, IROW1, ICOL1, ISRC, JSRC )
               IBUF4 = IBUF4 + 2
               BUF( ISTR4+IBUF4-1 ) = A( ( ICOL1-1 )*LDA+IROW1 )
               BUF( ISTR4+IBUF4 ) = A( ( ICOL1-1 )*LDA+IROW1+1 )
            END IF
         END IF
         IF( ( MODKM1.EQ.HBL-2 ) .AND. ( UP.EQ.II ) .AND.
     $       ( MYCOL.EQ.JJ ) ) THEN
*
*           We must pack H(M+2,M+1) and send it up
*
            IF( NPROW.GT.1 ) THEN
               CALL INFOG2L( M+2, M+1, DESCA, NPROW, NPCOL, MYROW,
     $                       MYCOL, IROW1, ICOL1, ISRC, JSRC )
               IBUF2 = IBUF2 + 1
               BUF( ISTR2+IBUF2 ) = A( ( ICOL1-1 )*LDA+IROW1 )
            END IF
         END IF
*
*        Add up the receives
*
         IF( ( MYROW.EQ.II ) .AND. ( MYCOL.EQ.JJ ) ) THEN
            IF( ( MODKM1.EQ.0 ) .AND. ( M.GT.L ) .AND.
     $          ( ( NPROW.GT.1 ) .OR. ( NPCOL.GT.1 ) ) ) THEN
*
*              We must receive H(M-1,M-1) from diagonal up
*
               IRCV1 = IRCV1 + 1
            END IF
            IF( ( MODKM1.EQ.0 ) .AND. ( NPCOL.GT.1 ) .AND. ( M.GT.L ) )
     $           THEN
*
*              We must receive H(M  ,M-1) from left
*
               IRCV5 = IRCV5 + 1
            END IF
            IF( ( MODKM1.EQ.HBL-1 ) .AND. ( NPROW.GT.1 ) ) THEN
*
*              We must receive H(M+1,M  ) from down
*
               IRCV2 = IRCV2 + 1
            END IF
            IF( ( MODKM1.EQ.HBL-1 ) .AND. ( NPCOL.GT.1 ) ) THEN
*
*              We must receive H(M  ,M+1) from right
*
               IRCV3 = IRCV3 + 1
            END IF
            IF( ( MODKM1.EQ.HBL-1 ) .AND.
     $          ( ( NPROW.GT.1 ) .OR. ( NPCOL.GT.1 ) ) ) THEN
*
*              We must receive H(M+1:M+2,M+1) from diagonal down
*
               IRCV4 = IRCV4 + 2
            END IF
            IF( ( MODKM1.EQ.HBL-2 ) .AND. ( NPROW.GT.1 ) ) THEN
*
*              We must receive H(M+2,M+1) from down
*
               IRCV2 = IRCV2 + 1
            END IF
         END IF
*
*        Possibly change owners (occurs only when MOD(M-1,HBL) = 0)
*
         IF( MODKM1.EQ.0 ) THEN
            II = II - 1
            JJ = JJ - 1
            IF( II.LT.0 )
     $         II = NPROW - 1
            IF( JJ.LT.0 )
     $         JJ = NPCOL - 1
         END IF
         MODKM1 = MODKM1 - 1
         IF( MODKM1.LT.0 )
     $      MODKM1 = HBL - 1
   10 CONTINUE
*
*
*     Send data on to the appropriate node if there is any data to send
*
      IF( IBUF1.GT.0 ) THEN
         CALL SGESD2D( CONTXT, IBUF1, 1, BUF( ISTR1+1 ), IBUF1, DOWN,
     $                 RIGHT )
      END IF
      IF( IBUF2.GT.0 ) THEN
         CALL SGESD2D( CONTXT, IBUF2, 1, BUF( ISTR2+1 ), IBUF2, UP,
     $                 MYCOL )
      END IF
      IF( IBUF3.GT.0 ) THEN
         CALL SGESD2D( CONTXT, IBUF3, 1, BUF( ISTR3+1 ), IBUF3, MYROW,
     $                 LEFT )
      END IF
      IF( IBUF4.GT.0 ) THEN
         CALL SGESD2D( CONTXT, IBUF4, 1, BUF( ISTR4+1 ), IBUF4, UP,
     $                 LEFT )
      END IF
      IF( IBUF5.GT.0 ) THEN
         CALL SGESD2D( CONTXT, IBUF5, 1, BUF( ISTR5+1 ), IBUF5, MYROW,
     $                 RIGHT )
      END IF
*
*     Receive appropriate data if there is any
*
      IF( IRCV1.GT.0 ) THEN
         CALL SGERV2D( CONTXT, IRCV1, 1, BUF( ISTR1+1 ), IRCV1, UP,
     $                 LEFT )
      END IF
      IF( IRCV2.GT.0 ) THEN
         CALL SGERV2D( CONTXT, IRCV2, 1, BUF( ISTR2+1 ), IRCV2, DOWN,
     $                 MYCOL )
      END IF
      IF( IRCV3.GT.0 ) THEN
         CALL SGERV2D( CONTXT, IRCV3, 1, BUF( ISTR3+1 ), IRCV3, MYROW,
     $                 RIGHT )
      END IF
      IF( IRCV4.GT.0 ) THEN
         CALL SGERV2D( CONTXT, IRCV4, 1, BUF( ISTR4+1 ), IRCV4, DOWN,
     $                 RIGHT )
      END IF
      IF( IRCV5.GT.0 ) THEN
         CALL SGERV2D( CONTXT, IRCV5, 1, BUF( ISTR5+1 ), IRCV5, MYROW,
     $                 LEFT )
      END IF
*
*     Start main loop
*
      IBUF1 = 0
      IBUF2 = 0
      IBUF3 = 0
      IBUF4 = 0
      IBUF5 = 0
      CALL INFOG2L( I-2, I-2, DESCA, NPROW, NPCOL, MYROW, MYCOL, IROW1,
     $              ICOL1, II, JJ )
      MODKM1 = MOD( I-3+HBL, HBL )
      IF( ( MYROW.EQ.II ) .AND. ( MYCOL.EQ.JJ ) .AND.
     $    ( MODKM1.NE.HBL-1 ) ) THEN
         CALL INFOG2L( I-2, I-1, DESCA, NPROW, NPCOL, MYROW, MYCOL,
     $                 IROW1, ICOL1, ISRC, JSRC )
      END IF
*
*     Look for two consecutive small subdiagonal elements.
*
      DO 20 M = I - 2, L, -1
*
*        Determine the effect of starting the double-shift QR
*        iteration at row M, and see if this would make H(M,M-1)
*        negligible.
*
         IF( ( MYROW.EQ.II ) .AND. ( MYCOL.EQ.JJ ) ) THEN
            IF( MODKM1.EQ.0 ) THEN
               H22 = A( ( ICOL1-1 )*LDA+IROW1+1 )
               H11 = A( ( ICOL1-2 )*LDA+IROW1 )
               V3 = A( ( ICOL1-1 )*LDA+IROW1+2 )
               H21 = A( ( ICOL1-2 )*LDA+IROW1+1 )
               H12 = A( ( ICOL1-1 )*LDA+IROW1 )
               IF( M.GT.L ) THEN
                  IF( NUM.GT.1 ) THEN
                     IBUF1 = IBUF1 + 1
                     H00 = BUF( ISTR1+IBUF1 )
                  ELSE
                     H00 = A( ( ICOL1-3 )*LDA+IROW1-1 )
                  END IF
                  IF( NPCOL.GT.1 ) THEN
                     IBUF5 = IBUF5 + 1
                     H10 = BUF( ISTR5+IBUF5 )
                  ELSE
                     H10 = A( ( ICOL1-3 )*LDA+IROW1 )
                  END IF
               END IF
            END IF
            IF( MODKM1.EQ.HBL-1 ) THEN
               CALL INFOG2L( M, M, DESCA, NPROW, NPCOL, MYROW, MYCOL,
     $                       IROW1, ICOL1, ISRC, JSRC )
               H11 = A( ( ICOL1-1 )*LDA+IROW1 )
               IF( NUM.GT.1 ) THEN
                  IBUF4 = IBUF4 + 2
                  H22 = BUF( ISTR4+IBUF4-1 )
                  V3 = BUF( ISTR4+IBUF4 )
               ELSE
                  H22 = A( ICOL1*LDA+IROW1+1 )
                  V3 = A( ( ICOL1+1 )*LDA+IROW1+1 )
               END IF
               IF( NPROW.GT.1 ) THEN
                  IBUF2 = IBUF2 + 1
                  H21 = BUF( ISTR2+IBUF2 )
               ELSE
                  H21 = A( ( ICOL1-1 )*LDA+IROW1+1 )
               END IF
               IF( NPCOL.GT.1 ) THEN
                  IBUF3 = IBUF3 + 1
                  H12 = BUF( ISTR3+IBUF3 )
               ELSE
                  H12 = A( ICOL1*LDA+IROW1 )
               END IF
               IF( M.GT.L ) THEN
                  H00 = A( ( ICOL1-2 )*LDA+IROW1-1 )
                  H10 = A( ( ICOL1-2 )*LDA+IROW1 )
               END IF
*
*              Adjust ICOL1 for next iteration where MODKM1=HBL-2
*
               ICOL1 = ICOL1 + 1
            END IF
            IF( MODKM1.EQ.HBL-2 ) THEN
               H22 = A( ( ICOL1-1 )*LDA+IROW1+1 )
               H11 = A( ( ICOL1-2 )*LDA+IROW1 )
               IF( NPROW.GT.1 ) THEN
                  IBUF2 = IBUF2 + 1
                  V3 = BUF( ISTR2+IBUF2 )
               ELSE
                  V3 = A( ( ICOL1-1 )*LDA+IROW1+2 )
               END IF
               H21 = A( ( ICOL1-2 )*LDA+IROW1+1 )
               H12 = A( ( ICOL1-1 )*LDA+IROW1 )
               IF( M.GT.L ) THEN
                  H00 = A( ( ICOL1-3 )*LDA+IROW1-1 )
                  H10 = A( ( ICOL1-3 )*LDA+IROW1 )
               END IF
            END IF
            IF( ( MODKM1.LT.HBL-2 ) .AND. ( MODKM1.GT.0 ) ) THEN
               H22 = A( ( ICOL1-1 )*LDA+IROW1+1 )
               H11 = A( ( ICOL1-2 )*LDA+IROW1 )
               V3 = A( ( ICOL1-1 )*LDA+IROW1+2 )
               H21 = A( ( ICOL1-2 )*LDA+IROW1+1 )
               H12 = A( ( ICOL1-1 )*LDA+IROW1 )
               IF( M.GT.L ) THEN
                  H00 = A( ( ICOL1-3 )*LDA+IROW1-1 )
                  H10 = A( ( ICOL1-3 )*LDA+IROW1 )
               END IF
            END IF
            H44S = H44 - H11
            H33S = H33 - H11
            V1 = ( H33S*H44S-H43H34 ) / H21 + H12
            V2 = H22 - H11 - H33S - H44S
            S = ABS( V1 ) + ABS( V2 ) + ABS( V3 )
            V1 = V1 / S
            V2 = V2 / S
            V3 = V3 / S
            IF( M.EQ.L )
     $         GO TO 30
            TST1 = ABS( V1 )*( ABS( H00 )+ABS( H11 )+ABS( H22 ) )
            IF( ABS( H10 )*( ABS( V2 )+ABS( V3 ) ).LE.ULP*TST1 )
     $         GO TO 30
*
*           Slide indices diagonally up one for next iteration
*
            IROW1 = IROW1 - 1
            ICOL1 = ICOL1 - 1
         END IF
         IF( M.EQ.L ) THEN
*
*           Stop regardless of which node we are
*
            GO TO 30
         END IF
*
*        Possibly change owners if on border
*
         IF( MODKM1.EQ.0 ) THEN
            II = II - 1
            JJ = JJ - 1
            IF( II.LT.0 )
     $         II = NPROW - 1
            IF( JJ.LT.0 )
     $         JJ = NPCOL - 1
         END IF
         MODKM1 = MODKM1 - 1
         IF( MODKM1.LT.0 )
     $      MODKM1 = HBL - 1
   20 CONTINUE
   30 CONTINUE
*
      CALL IGAMX2D( CONTXT, 'ALL', ' ', 1, 1, M, 1, L, L, -1, -1, -1 )
*
      RETURN
*
*     End of PSLACONSB
*
      END