1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574
|
SUBROUTINE PSLACONSB( A, DESCA, I, L, M, H44, H33, H43H34, BUF,
$ LWORK )
*
* -- ScaLAPACK routine (version 1.7) --
* University of Tennessee, Knoxville, Oak Ridge National Laboratory,
* and University of California, Berkeley.
* May 1, 1997
*
* .. Scalar Arguments ..
INTEGER I, L, LWORK, M
REAL H33, H43H34, H44
* ..
* .. Array Arguments ..
INTEGER DESCA( * )
REAL A( * ), BUF( * )
* ..
*
* Purpose
* =======
*
* PSLACONSB looks for two consecutive small subdiagonal elements by
* seeing the effect of starting a double shift QR iteration
* given by H44, H33, & H43H34 and see if this would make a
* subdiagonal negligible.
*
* Notes
* =====
*
* Each global data object is described by an associated description
* vector. This vector stores the information required to establish
* the mapping between an object element and its corresponding process
* and memory location.
*
* Let A be a generic term for any 2D block cyclicly distributed array.
* Such a global array has an associated description vector DESCA.
* In the following comments, the character _ should be read as
* "of the global array".
*
* NOTATION STORED IN EXPLANATION
* --------------- -------------- --------------------------------------
* DTYPE_A(global) DESCA( DTYPE_ )The descriptor type. In this case,
* DTYPE_A = 1.
* CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
* the BLACS process grid A is distribu-
* ted over. The context itself is glo-
* bal, but the handle (the integer
* value) may vary.
* M_A (global) DESCA( M_ ) The number of rows in the global
* array A.
* N_A (global) DESCA( N_ ) The number of columns in the global
* array A.
* MB_A (global) DESCA( MB_ ) The blocking factor used to distribute
* the rows of the array.
* NB_A (global) DESCA( NB_ ) The blocking factor used to distribute
* the columns of the array.
* RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
* row of the array A is distributed.
* CSRC_A (global) DESCA( CSRC_ ) The process column over which the
* first column of the array A is
* distributed.
* LLD_A (local) DESCA( LLD_ ) The leading dimension of the local
* array. LLD_A >= MAX(1,LOCr(M_A)).
*
* Let K be the number of rows or columns of a distributed matrix,
* and assume that its process grid has dimension p x q.
* LOCr( K ) denotes the number of elements of K that a process
* would receive if K were distributed over the p processes of its
* process column.
* Similarly, LOCc( K ) denotes the number of elements of K that a
* process would receive if K were distributed over the q processes of
* its process row.
* The values of LOCr() and LOCc() may be determined via a call to the
* ScaLAPACK tool function, NUMROC:
* LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
* LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).
* An upper bound for these quantities may be computed by:
* LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
* LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A
*
* Arguments
* =========
*
* A (global input) REAL array, dimension
* (DESCA(LLD_),*)
* On entry, the Hessenberg matrix whose tridiagonal part is
* being scanned.
* Unchanged on exit.
*
* DESCA (global and local input) INTEGER array of dimension DLEN_.
* The array descriptor for the distributed matrix A.
*
* I (global input) INTEGER
* The global location of the bottom of the unreduced
* submatrix of A.
* Unchanged on exit.
*
* L (global input) INTEGER
* The global location of the top of the unreduced submatrix
* of A.
* Unchanged on exit.
*
* M (global output) INTEGER
* On exit, this yields the starting location of the QR double
* shift. This will satisfy: L <= M <= I-2.
*
* H44
* H33
* H43H34 (global input) REAL
* These three values are for the double shift QR iteration.
*
* BUF (local output) REAL array of size LWORK.
*
* LWORK (global input) INTEGER
* On exit, LWORK is the size of the work buffer.
* This must be at least 7*Ceil( Ceil( (I-L)/HBL ) /
* LCM(NPROW,NPCOL) )
* Here LCM is least common multiple, and NPROWxNPCOL is the
* logical grid size.
*
* Logic:
* ======
*
* Two consecutive small subdiagonal elements will stall
* convergence of a double shift if their product is small
* relatively even if each is not very small. Thus it is
* necessary to scan the "tridiagonal portion of the matrix." In
* the LAPACK algorithm DLAHQR, a loop of M goes from I-2 down to
* L and examines
* H(m,m),H(m+1,m+1),H(m+1,m),H(m,m+1),H(m-1,m-1),H(m,m-1), and
* H(m+2,m-1). Since these elements may be on separate
* processors, the first major loop (10) goes over the tridiagonal
* and has each node store whatever values of the 7 it has that
* the node owning H(m,m) does not. This will occur on a border
* and can happen in no more than 3 locations per block assuming
* square blocks. There are 5 buffers that each node stores these
* values: a buffer to send diagonally down and right, a buffer
* to send up, a buffer to send left, a buffer to send diagonally
* up and left and a buffer to send right. Each of these buffers
* is actually stored in one buffer BUF where BUF(ISTR1+1) starts
* the first buffer, BUF(ISTR2+1) starts the second, etc.. After
* the values are stored, if there are any values that a node
* needs, they will be sent and received. Then the next major
* loop passes over the data and searches for two consecutive
* small subdiagonals.
*
* Notes:
*
* This routine does a global maximum and must be called by all
* processes.
*
*
* Implemented by: G. Henry, November 17, 1996
*
* =====================================================================
*
* .. Parameters ..
INTEGER BLOCK_CYCLIC_2D, CSRC_, CTXT_, DLEN_, DTYPE_,
$ LLD_, MB_, M_, NB_, N_, RSRC_
PARAMETER ( BLOCK_CYCLIC_2D = 1, DLEN_ = 9, DTYPE_ = 1,
$ CTXT_ = 2, M_ = 3, N_ = 4, MB_ = 5, NB_ = 6,
$ RSRC_ = 7, CSRC_ = 8, LLD_ = 9 )
* ..
* .. Local Scalars ..
INTEGER CONTXT, DOWN, HBL, IBUF1, IBUF2, IBUF3, IBUF4,
$ IBUF5, ICOL1, II, IRCV1, IRCV2, IRCV3, IRCV4,
$ IRCV5, IROW1, ISRC, ISTR1, ISTR2, ISTR3, ISTR4,
$ ISTR5, JJ, JSRC, LDA, LEFT, MODKM1, MYCOL,
$ MYROW, NPCOL, NPROW, NUM, RIGHT, UP
REAL H00, H10, H11, H12, H21, H22, H33S, H44S, S,
$ TST1, ULP, V1, V2, V3
* ..
* .. External Functions ..
INTEGER ILCM
REAL PSLAMCH
EXTERNAL ILCM, PSLAMCH
* ..
* .. External Subroutines ..
EXTERNAL BLACS_GRIDINFO, SGERV2D, SGESD2D, IGAMX2D,
$ INFOG2L, PXERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, MOD
* ..
* .. Executable Statements ..
*
HBL = DESCA( MB_ )
CONTXT = DESCA( CTXT_ )
LDA = DESCA( LLD_ )
ULP = PSLAMCH( CONTXT, 'PRECISION' )
CALL BLACS_GRIDINFO( CONTXT, NPROW, NPCOL, MYROW, MYCOL )
LEFT = MOD( MYCOL+NPCOL-1, NPCOL )
RIGHT = MOD( MYCOL+1, NPCOL )
UP = MOD( MYROW+NPROW-1, NPROW )
DOWN = MOD( MYROW+1, NPROW )
NUM = NPROW*NPCOL
*
* BUFFER1 starts at BUF(ISTR1+1) and will contain IBUF1 elements
* BUFFER2 starts at BUF(ISTR2+1) and will contain IBUF2 elements
* BUFFER3 starts at BUF(ISTR3+1) and will contain IBUF3 elements
* BUFFER4 starts at BUF(ISTR4+1) and will contain IBUF4 elements
* BUFFER5 starts at BUF(ISTR5+1) and will contain IBUF5 elements
*
ISTR1 = 0
ISTR2 = ( ( I-L-1 ) / HBL )
IF( ISTR2*HBL.LT.( I-L-1 ) )
$ ISTR2 = ISTR2 + 1
II = ISTR2 / ILCM( NPROW, NPCOL )
IF( II*ILCM( NPROW, NPCOL ).LT.ISTR2 ) THEN
ISTR2 = II + 1
ELSE
ISTR2 = II
END IF
IF( LWORK.LT.7*ISTR2 ) THEN
CALL PXERBLA( CONTXT, 'PSLACONSB', 10 )
RETURN
END IF
ISTR3 = 3*ISTR2
ISTR4 = ISTR3 + ISTR2
ISTR5 = ISTR3 + ISTR3
CALL INFOG2L( I-2, I-2, DESCA, NPROW, NPCOL, MYROW, MYCOL, IROW1,
$ ICOL1, II, JJ )
MODKM1 = MOD( I-3+HBL, HBL )
*
* Copy our relevant pieces of triadiagonal that we owe into
* 5 buffers to send to whomever owns H(M,M) as M moves diagonally
* up the tridiagonal
*
IBUF1 = 0
IBUF2 = 0
IBUF3 = 0
IBUF4 = 0
IBUF5 = 0
IRCV1 = 0
IRCV2 = 0
IRCV3 = 0
IRCV4 = 0
IRCV5 = 0
DO 10 M = I - 2, L, -1
IF( ( MODKM1.EQ.0 ) .AND. ( DOWN.EQ.II ) .AND.
$ ( RIGHT.EQ.JJ ) .AND. ( M.GT.L ) ) THEN
*
* We must pack H(M-1,M-1) and send it diagonal down
*
IF( ( DOWN.NE.MYROW ) .OR. ( RIGHT.NE.MYCOL ) ) THEN
CALL INFOG2L( M-1, M-1, DESCA, NPROW, NPCOL, MYROW,
$ MYCOL, IROW1, ICOL1, ISRC, JSRC )
IBUF1 = IBUF1 + 1
BUF( ISTR1+IBUF1 ) = A( ( ICOL1-1 )*LDA+IROW1 )
END IF
END IF
IF( ( MODKM1.EQ.0 ) .AND. ( MYROW.EQ.II ) .AND.
$ ( RIGHT.EQ.JJ ) .AND. ( M.GT.L ) ) THEN
*
* We must pack H(M ,M-1) and send it right
*
IF( NPCOL.GT.1 ) THEN
CALL INFOG2L( M, M-1, DESCA, NPROW, NPCOL, MYROW, MYCOL,
$ IROW1, ICOL1, ISRC, JSRC )
IBUF5 = IBUF5 + 1
BUF( ISTR5+IBUF5 ) = A( ( ICOL1-1 )*LDA+IROW1 )
END IF
END IF
IF( ( MODKM1.EQ.HBL-1 ) .AND. ( UP.EQ.II ) .AND.
$ ( MYCOL.EQ.JJ ) ) THEN
*
* We must pack H(M+1,M) and send it up
*
IF( NPROW.GT.1 ) THEN
CALL INFOG2L( M+1, M, DESCA, NPROW, NPCOL, MYROW, MYCOL,
$ IROW1, ICOL1, ISRC, JSRC )
IBUF2 = IBUF2 + 1
BUF( ISTR2+IBUF2 ) = A( ( ICOL1-1 )*LDA+IROW1 )
END IF
END IF
IF( ( MODKM1.EQ.HBL-1 ) .AND. ( MYROW.EQ.II ) .AND.
$ ( LEFT.EQ.JJ ) ) THEN
*
* We must pack H(M ,M+1) and send it left
*
IF( NPCOL.GT.1 ) THEN
CALL INFOG2L( M, M+1, DESCA, NPROW, NPCOL, MYROW, MYCOL,
$ IROW1, ICOL1, ISRC, JSRC )
IBUF3 = IBUF3 + 1
BUF( ISTR3+IBUF3 ) = A( ( ICOL1-1 )*LDA+IROW1 )
END IF
END IF
IF( ( MODKM1.EQ.HBL-1 ) .AND. ( UP.EQ.II ) .AND.
$ ( LEFT.EQ.JJ ) ) THEN
*
* We must pack H(M+1,M+1) & H(M+2,M+1) and send it
* diagonally up
*
IF( ( UP.NE.MYROW ) .OR. ( LEFT.NE.MYCOL ) ) THEN
CALL INFOG2L( M+1, M+1, DESCA, NPROW, NPCOL, MYROW,
$ MYCOL, IROW1, ICOL1, ISRC, JSRC )
IBUF4 = IBUF4 + 2
BUF( ISTR4+IBUF4-1 ) = A( ( ICOL1-1 )*LDA+IROW1 )
BUF( ISTR4+IBUF4 ) = A( ( ICOL1-1 )*LDA+IROW1+1 )
END IF
END IF
IF( ( MODKM1.EQ.HBL-2 ) .AND. ( UP.EQ.II ) .AND.
$ ( MYCOL.EQ.JJ ) ) THEN
*
* We must pack H(M+2,M+1) and send it up
*
IF( NPROW.GT.1 ) THEN
CALL INFOG2L( M+2, M+1, DESCA, NPROW, NPCOL, MYROW,
$ MYCOL, IROW1, ICOL1, ISRC, JSRC )
IBUF2 = IBUF2 + 1
BUF( ISTR2+IBUF2 ) = A( ( ICOL1-1 )*LDA+IROW1 )
END IF
END IF
*
* Add up the receives
*
IF( ( MYROW.EQ.II ) .AND. ( MYCOL.EQ.JJ ) ) THEN
IF( ( MODKM1.EQ.0 ) .AND. ( M.GT.L ) .AND.
$ ( ( NPROW.GT.1 ) .OR. ( NPCOL.GT.1 ) ) ) THEN
*
* We must receive H(M-1,M-1) from diagonal up
*
IRCV1 = IRCV1 + 1
END IF
IF( ( MODKM1.EQ.0 ) .AND. ( NPCOL.GT.1 ) .AND. ( M.GT.L ) )
$ THEN
*
* We must receive H(M ,M-1) from left
*
IRCV5 = IRCV5 + 1
END IF
IF( ( MODKM1.EQ.HBL-1 ) .AND. ( NPROW.GT.1 ) ) THEN
*
* We must receive H(M+1,M ) from down
*
IRCV2 = IRCV2 + 1
END IF
IF( ( MODKM1.EQ.HBL-1 ) .AND. ( NPCOL.GT.1 ) ) THEN
*
* We must receive H(M ,M+1) from right
*
IRCV3 = IRCV3 + 1
END IF
IF( ( MODKM1.EQ.HBL-1 ) .AND.
$ ( ( NPROW.GT.1 ) .OR. ( NPCOL.GT.1 ) ) ) THEN
*
* We must receive H(M+1:M+2,M+1) from diagonal down
*
IRCV4 = IRCV4 + 2
END IF
IF( ( MODKM1.EQ.HBL-2 ) .AND. ( NPROW.GT.1 ) ) THEN
*
* We must receive H(M+2,M+1) from down
*
IRCV2 = IRCV2 + 1
END IF
END IF
*
* Possibly change owners (occurs only when MOD(M-1,HBL) = 0)
*
IF( MODKM1.EQ.0 ) THEN
II = II - 1
JJ = JJ - 1
IF( II.LT.0 )
$ II = NPROW - 1
IF( JJ.LT.0 )
$ JJ = NPCOL - 1
END IF
MODKM1 = MODKM1 - 1
IF( MODKM1.LT.0 )
$ MODKM1 = HBL - 1
10 CONTINUE
*
*
* Send data on to the appropriate node if there is any data to send
*
IF( IBUF1.GT.0 ) THEN
CALL SGESD2D( CONTXT, IBUF1, 1, BUF( ISTR1+1 ), IBUF1, DOWN,
$ RIGHT )
END IF
IF( IBUF2.GT.0 ) THEN
CALL SGESD2D( CONTXT, IBUF2, 1, BUF( ISTR2+1 ), IBUF2, UP,
$ MYCOL )
END IF
IF( IBUF3.GT.0 ) THEN
CALL SGESD2D( CONTXT, IBUF3, 1, BUF( ISTR3+1 ), IBUF3, MYROW,
$ LEFT )
END IF
IF( IBUF4.GT.0 ) THEN
CALL SGESD2D( CONTXT, IBUF4, 1, BUF( ISTR4+1 ), IBUF4, UP,
$ LEFT )
END IF
IF( IBUF5.GT.0 ) THEN
CALL SGESD2D( CONTXT, IBUF5, 1, BUF( ISTR5+1 ), IBUF5, MYROW,
$ RIGHT )
END IF
*
* Receive appropriate data if there is any
*
IF( IRCV1.GT.0 ) THEN
CALL SGERV2D( CONTXT, IRCV1, 1, BUF( ISTR1+1 ), IRCV1, UP,
$ LEFT )
END IF
IF( IRCV2.GT.0 ) THEN
CALL SGERV2D( CONTXT, IRCV2, 1, BUF( ISTR2+1 ), IRCV2, DOWN,
$ MYCOL )
END IF
IF( IRCV3.GT.0 ) THEN
CALL SGERV2D( CONTXT, IRCV3, 1, BUF( ISTR3+1 ), IRCV3, MYROW,
$ RIGHT )
END IF
IF( IRCV4.GT.0 ) THEN
CALL SGERV2D( CONTXT, IRCV4, 1, BUF( ISTR4+1 ), IRCV4, DOWN,
$ RIGHT )
END IF
IF( IRCV5.GT.0 ) THEN
CALL SGERV2D( CONTXT, IRCV5, 1, BUF( ISTR5+1 ), IRCV5, MYROW,
$ LEFT )
END IF
*
* Start main loop
*
IBUF1 = 0
IBUF2 = 0
IBUF3 = 0
IBUF4 = 0
IBUF5 = 0
CALL INFOG2L( I-2, I-2, DESCA, NPROW, NPCOL, MYROW, MYCOL, IROW1,
$ ICOL1, II, JJ )
MODKM1 = MOD( I-3+HBL, HBL )
IF( ( MYROW.EQ.II ) .AND. ( MYCOL.EQ.JJ ) .AND.
$ ( MODKM1.NE.HBL-1 ) ) THEN
CALL INFOG2L( I-2, I-1, DESCA, NPROW, NPCOL, MYROW, MYCOL,
$ IROW1, ICOL1, ISRC, JSRC )
END IF
*
* Look for two consecutive small subdiagonal elements.
*
DO 20 M = I - 2, L, -1
*
* Determine the effect of starting the double-shift QR
* iteration at row M, and see if this would make H(M,M-1)
* negligible.
*
IF( ( MYROW.EQ.II ) .AND. ( MYCOL.EQ.JJ ) ) THEN
IF( MODKM1.EQ.0 ) THEN
H22 = A( ( ICOL1-1 )*LDA+IROW1+1 )
H11 = A( ( ICOL1-2 )*LDA+IROW1 )
V3 = A( ( ICOL1-1 )*LDA+IROW1+2 )
H21 = A( ( ICOL1-2 )*LDA+IROW1+1 )
H12 = A( ( ICOL1-1 )*LDA+IROW1 )
IF( M.GT.L ) THEN
IF( NUM.GT.1 ) THEN
IBUF1 = IBUF1 + 1
H00 = BUF( ISTR1+IBUF1 )
ELSE
H00 = A( ( ICOL1-3 )*LDA+IROW1-1 )
END IF
IF( NPCOL.GT.1 ) THEN
IBUF5 = IBUF5 + 1
H10 = BUF( ISTR5+IBUF5 )
ELSE
H10 = A( ( ICOL1-3 )*LDA+IROW1 )
END IF
END IF
END IF
IF( MODKM1.EQ.HBL-1 ) THEN
CALL INFOG2L( M, M, DESCA, NPROW, NPCOL, MYROW, MYCOL,
$ IROW1, ICOL1, ISRC, JSRC )
H11 = A( ( ICOL1-1 )*LDA+IROW1 )
IF( NUM.GT.1 ) THEN
IBUF4 = IBUF4 + 2
H22 = BUF( ISTR4+IBUF4-1 )
V3 = BUF( ISTR4+IBUF4 )
ELSE
H22 = A( ICOL1*LDA+IROW1+1 )
V3 = A( ( ICOL1+1 )*LDA+IROW1+1 )
END IF
IF( NPROW.GT.1 ) THEN
IBUF2 = IBUF2 + 1
H21 = BUF( ISTR2+IBUF2 )
ELSE
H21 = A( ( ICOL1-1 )*LDA+IROW1+1 )
END IF
IF( NPCOL.GT.1 ) THEN
IBUF3 = IBUF3 + 1
H12 = BUF( ISTR3+IBUF3 )
ELSE
H12 = A( ICOL1*LDA+IROW1 )
END IF
IF( M.GT.L ) THEN
H00 = A( ( ICOL1-2 )*LDA+IROW1-1 )
H10 = A( ( ICOL1-2 )*LDA+IROW1 )
END IF
*
* Adjust ICOL1 for next iteration where MODKM1=HBL-2
*
ICOL1 = ICOL1 + 1
END IF
IF( MODKM1.EQ.HBL-2 ) THEN
H22 = A( ( ICOL1-1 )*LDA+IROW1+1 )
H11 = A( ( ICOL1-2 )*LDA+IROW1 )
IF( NPROW.GT.1 ) THEN
IBUF2 = IBUF2 + 1
V3 = BUF( ISTR2+IBUF2 )
ELSE
V3 = A( ( ICOL1-1 )*LDA+IROW1+2 )
END IF
H21 = A( ( ICOL1-2 )*LDA+IROW1+1 )
H12 = A( ( ICOL1-1 )*LDA+IROW1 )
IF( M.GT.L ) THEN
H00 = A( ( ICOL1-3 )*LDA+IROW1-1 )
H10 = A( ( ICOL1-3 )*LDA+IROW1 )
END IF
END IF
IF( ( MODKM1.LT.HBL-2 ) .AND. ( MODKM1.GT.0 ) ) THEN
H22 = A( ( ICOL1-1 )*LDA+IROW1+1 )
H11 = A( ( ICOL1-2 )*LDA+IROW1 )
V3 = A( ( ICOL1-1 )*LDA+IROW1+2 )
H21 = A( ( ICOL1-2 )*LDA+IROW1+1 )
H12 = A( ( ICOL1-1 )*LDA+IROW1 )
IF( M.GT.L ) THEN
H00 = A( ( ICOL1-3 )*LDA+IROW1-1 )
H10 = A( ( ICOL1-3 )*LDA+IROW1 )
END IF
END IF
H44S = H44 - H11
H33S = H33 - H11
V1 = ( H33S*H44S-H43H34 ) / H21 + H12
V2 = H22 - H11 - H33S - H44S
S = ABS( V1 ) + ABS( V2 ) + ABS( V3 )
V1 = V1 / S
V2 = V2 / S
V3 = V3 / S
IF( M.EQ.L )
$ GO TO 30
TST1 = ABS( V1 )*( ABS( H00 )+ABS( H11 )+ABS( H22 ) )
IF( ABS( H10 )*( ABS( V2 )+ABS( V3 ) ).LE.ULP*TST1 )
$ GO TO 30
*
* Slide indices diagonally up one for next iteration
*
IROW1 = IROW1 - 1
ICOL1 = ICOL1 - 1
END IF
IF( M.EQ.L ) THEN
*
* Stop regardless of which node we are
*
GO TO 30
END IF
*
* Possibly change owners if on border
*
IF( MODKM1.EQ.0 ) THEN
II = II - 1
JJ = JJ - 1
IF( II.LT.0 )
$ II = NPROW - 1
IF( JJ.LT.0 )
$ JJ = NPCOL - 1
END IF
MODKM1 = MODKM1 - 1
IF( MODKM1.LT.0 )
$ MODKM1 = HBL - 1
20 CONTINUE
30 CONTINUE
*
CALL IGAMX2D( CONTXT, 'ALL', ' ', 1, 1, M, 1, L, L, -1, -1, -1 )
*
RETURN
*
* End of PSLACONSB
*
END
|