1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
|
SUBROUTINE PSLAED0( N, D, E, Q, IQ, JQ, DESCQ, WORK, IWORK, INFO )
*
* -- ScaLAPACK auxiliary routine (version 1.7) --
* University of Tennessee, Knoxville, Oak Ridge National Laboratory,
* and University of California, Berkeley.
* December 31, 1998
*
* .. Scalar Arguments ..
INTEGER INFO, IQ, JQ, N
* ..
* .. Array Arguments ..
INTEGER DESCQ( * ), IWORK( * )
REAL D( * ), E( * ), Q( * ), WORK( * )
* ..
*
* Purpose
* =======
*
* PSLAED0 computes all eigenvalues and corresponding eigenvectors of a
* symmetric tridiagonal matrix using the divide and conquer method.
*
*
* Arguments
* =========
*
* N (global input) INTEGER
* The order of the tridiagonal matrix T. N >= 0.
*
* D (global input/output) REAL array, dimension (N)
* On entry, the diagonal elements of the tridiagonal matrix.
* On exit, if INFO = 0, the eigenvalues in descending order.
*
* E (global input/output) REAL array, dimension (N-1)
* On entry, the subdiagonal elements of the tridiagonal matrix.
* On exit, E has been destroyed.
*
* Q (local output) REAL array,
* global dimension (N, N),
* local dimension ( LLD_Q, LOCc(JQ+N-1))
* Q contains the orthonormal eigenvectors of the symmetric
* tridiagonal matrix.
* On output, Q is distributed across the P processes in block
* cyclic format.
*
* IQ (global input) INTEGER
* Q's global row index, which points to the beginning of the
* submatrix which is to be operated on.
*
* JQ (global input) INTEGER
* Q's global column index, which points to the beginning of
* the submatrix which is to be operated on.
*
* DESCQ (global and local input) INTEGER array of dimension DLEN_.
* The array descriptor for the distributed matrix Z.
*
*
* WORK (local workspace ) REAL array, dimension (LWORK)
* LWORK = 6*N + 2*NP*NQ, with
* NP = NUMROC( N, MB_Q, MYROW, IQROW, NPROW )
* NQ = NUMROC( N, NB_Q, MYCOL, IQCOL, NPCOL )
* IQROW = INDXG2P( IQ, NB_Q, MYROW, RSRC_Q, NPROW )
* IQCOL = INDXG2P( JQ, MB_Q, MYCOL, CSRC_Q, NPCOL )
*
* IWORK (local workspace/output) INTEGER array, dimension (LIWORK)
* LIWORK = 2 + 7*N + 8*NPCOL
*
* INFO (global output) INTEGER
* = 0: successful exit
* < 0: If the i-th argument is an array and the j-entry had
* an illegal value, then INFO = -(i*100+j), if the i-th
* argument is a scalar and had an illegal value, then
* INFO = -i.
* > 0: The algorithm failed to compute the INFO/(N+1) th
* eigenvalue while working on the submatrix lying in
* global rows and columns mod(INFO,N+1).
*
* =====================================================================
*
* .. Parameters ..
*
INTEGER BLOCK_CYCLIC_2D, DLEN_, DTYPE_, CTXT_, M_, N_,
$ MB_, NB_, RSRC_, CSRC_, LLD_
PARAMETER ( BLOCK_CYCLIC_2D = 1, DLEN_ = 9, DTYPE_ = 1,
$ CTXT_ = 2, M_ = 3, N_ = 4, MB_ = 5, NB_ = 6,
$ RSRC_ = 7, CSRC_ = 8, LLD_ = 9 )
* ..
* .. Local Scalars ..
INTEGER I, ID, IDCOL, IDROW, IID, IINFO, IIQ, IM1, IM2,
$ IPQ, IQCOL, IQROW, J, JJD, JJQ, LDQ, MATSIZ,
$ MYCOL, MYROW, N1, NB, NBL, NBL1, NPCOL, NPROW,
$ SUBPBS, TSUBPBS
* ..
* .. External Subroutines ..
EXTERNAL BLACS_GRIDINFO, INFOG2L, PSLAED1, PXERBLA,
$ SGEBR2D, SGEBS2D, SGERV2D, SGESD2D, SSTEQR
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, MIN
* ..
* .. Executable Statements ..
*
* This is just to keep ftnchek and toolpack/1 happy
IF( BLOCK_CYCLIC_2D*CSRC_*CTXT_*DLEN_*DTYPE_*LLD_*MB_*M_*NB_*N_*
$ RSRC_.LT.0 )RETURN
*
* Test the input parameters.
*
CALL BLACS_GRIDINFO( DESCQ( CTXT_ ), NPROW, NPCOL, MYROW, MYCOL )
INFO = 0
IF( DESCQ( NB_ ).GT.N .OR. N.LT.2 )
$ INFO = -1
IF( INFO.NE.0 ) THEN
CALL PXERBLA( DESCQ( CTXT_ ), 'PSLAED0', -INFO )
RETURN
END IF
*
NB = DESCQ( NB_ )
LDQ = DESCQ( LLD_ )
CALL INFOG2L( IQ, JQ, DESCQ, NPROW, NPCOL, MYROW, MYCOL, IIQ, JJQ,
$ IQROW, IQCOL )
*
* Determine the size and placement of the submatrices, and save in
* the leading elements of IWORK.
*
TSUBPBS = ( N-1 ) / NB + 1
IWORK( 1 ) = TSUBPBS
SUBPBS = 1
10 CONTINUE
IF( IWORK( SUBPBS ).GT.1 ) THEN
DO 20 J = SUBPBS, 1, -1
IWORK( 2*J ) = ( IWORK( J )+1 ) / 2
IWORK( 2*J-1 ) = IWORK( J ) / 2
20 CONTINUE
SUBPBS = 2*SUBPBS
GO TO 10
END IF
DO 30 J = 2, SUBPBS
IWORK( J ) = IWORK( J ) + IWORK( J-1 )
30 CONTINUE
*
* Divide the matrix into TSUBPBS submatrices of size at most NB
* using rank-1 modifications (cuts).
*
DO 40 I = NB + 1, N, NB
IM1 = I - 1
D( IM1 ) = D( IM1 ) - ABS( E( IM1 ) )
D( I ) = D( I ) - ABS( E( IM1 ) )
40 CONTINUE
*
* Solve each submatrix eigenproblem at the bottom of the divide and
* conquer tree. D is the same on each process.
*
DO 50 ID = 1, N, NB
CALL INFOG2L( IQ-1+ID, JQ-1+ID, DESCQ, NPROW, NPCOL, MYROW,
$ MYCOL, IID, JJD, IDROW, IDCOL )
MATSIZ = MIN( NB, N-ID+1 )
IF( MYROW.EQ.IDROW .AND. MYCOL.EQ.IDCOL ) THEN
IPQ = IID + ( JJD-1 )*LDQ
CALL SSTEQR( 'I', MATSIZ, D( ID ), E( ID ), Q( IPQ ), LDQ,
$ WORK, INFO )
IF( INFO.NE.0 ) THEN
CALL PXERBLA( DESCQ( CTXT_ ), 'SSTEQR', -INFO )
RETURN
END IF
IF( MYROW.NE.IQROW .OR. MYCOL.NE.IQCOL ) THEN
CALL SGESD2D( DESCQ( CTXT_ ), MATSIZ, 1, D( ID ), MATSIZ,
$ IQROW, IQCOL )
END IF
ELSE IF( MYROW.EQ.IQROW .AND. MYCOL.EQ.IQCOL ) THEN
CALL SGERV2D( DESCQ( CTXT_ ), MATSIZ, 1, D( ID ), MATSIZ,
$ IDROW, IDCOL )
END IF
50 CONTINUE
*
IF( MYROW.EQ.IQROW .AND. MYCOL.EQ.IQCOL ) THEN
CALL SGEBS2D( DESCQ( CTXT_ ), 'A', ' ', N, 1, D, N )
ELSE
CALL SGEBR2D( DESCQ( CTXT_ ), 'A', ' ', N, 1, D, N, IQROW,
$ IQCOL )
END IF
*
* Successively merge eigensystems of adjacent submatrices
* into eigensystem for the corresponding larger matrix.
*
* while ( SUBPBS > 1 )
*
60 CONTINUE
IF( SUBPBS.GT.1 ) THEN
IM2 = SUBPBS - 2
DO 80 I = 0, IM2, 2
IF( I.EQ.0 ) THEN
NBL = IWORK( 2 )
NBL1 = IWORK( 1 )
IF( NBL1.EQ.0 )
$ GO TO 70
ID = 1
MATSIZ = MIN( N, NBL*NB )
N1 = NBL1*NB
ELSE
NBL = IWORK( I+2 ) - IWORK( I )
NBL1 = NBL / 2
IF( NBL1.EQ.0 )
$ GO TO 70
ID = IWORK( I )*NB + 1
MATSIZ = MIN( NB*NBL, N-ID+1 )
N1 = NBL1*NB
END IF
*
* Merge lower order eigensystems (of size N1 and MATSIZ - N1)
* into an eigensystem of size MATSIZ.
*
CALL PSLAED1( MATSIZ, N1, D( ID ), ID, Q, IQ, JQ, DESCQ,
$ E( ID+N1-1 ), WORK, IWORK( SUBPBS+1 ), IINFO )
IF( IINFO.NE.0 ) THEN
INFO = IINFO*( N+1 ) + ID
END IF
70 CONTINUE
IWORK( I / 2+1 ) = IWORK( I+2 )
80 CONTINUE
SUBPBS = SUBPBS / 2
GO TO 60
END IF
*
* end while
*
90 CONTINUE
RETURN
*
* End of PSLAED0
*
END
|