1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442
|
SUBROUTINE PSSTEBZ( ICTXT, RANGE, ORDER, N, VL, VU, IL, IU,
$ ABSTOL, D, E, M, NSPLIT, W, IBLOCK, ISPLIT,
$ WORK, LWORK, IWORK, LIWORK, INFO )
*
* -- ScaLAPACK routine (version 1.7) --
* University of Tennessee, Knoxville, Oak Ridge National Laboratory,
* and University of California, Berkeley.
* November 15, 1997
*
* .. Scalar Arguments ..
CHARACTER ORDER, RANGE
INTEGER ICTXT, IL, INFO, IU, LIWORK, LWORK, M, N,
$ NSPLIT
REAL ABSTOL, VL, VU
* ..
* .. Array Arguments ..
INTEGER IBLOCK( * ), ISPLIT( * ), IWORK( * )
REAL D( * ), E( * ), W( * ), WORK( * )
* ..
*
* Purpose
* =======
*
* PSSTEBZ computes the eigenvalues of a symmetric tridiagonal matrix in
* parallel. The user may ask for all eigenvalues, all eigenvalues in
* the interval [VL, VU], or the eigenvalues indexed IL through IU. A
* static partitioning of work is done at the beginning of PSSTEBZ which
* results in all processes finding an (almost) equal number of
* eigenvalues.
*
* NOTE : It is assumed that the user is on an IEEE machine. If the user
* is not on an IEEE mchine, set the compile time flag NO_IEEE
* to 1 (in SLmake.inc). The features of IEEE arithmetic that
* are needed for the "fast" Sturm Count are : (a) infinity
* arithmetic (b) the sign bit of a double precision floating
* point number is assumed be in the 32nd or 64th bit position
* (c) the sign of negative zero.
*
* See W. Kahan "Accurate Eigenvalues of a Symmetric Tridiagonal
* Matrix", Report CS41, Computer Science Dept., Stanford
* University, July 21, 1966.
*
* Arguments
* =========
*
* ICTXT (global input) INTEGER
* The BLACS context handle.
*
* RANGE (global input) CHARACTER
* Specifies which eigenvalues are to be found.
* = 'A': ("All") all eigenvalues will be found.
* = 'V': ("Value") all eigenvalues in the interval
* [VL, VU] will be found.
* = 'I': ("Index") the IL-th through IU-th eigenvalues (of the
* entire matrix) will be found.
*
* ORDER (global input) CHARACTER
* Specifies the order in which the eigenvalues and their block
* numbers are stored in W and IBLOCK.
* = 'B': ("By Block") the eigenvalues will be grouped by
* split-off block (see IBLOCK, ISPLIT) and
* ordered from smallest to largest within
* the block.
* = 'E': ("Entire matrix")
* the eigenvalues for the entire matrix
* will be ordered from smallest to largest.
*
* N (global input) INTEGER
* The order of the tridiagonal matrix T. N >= 0.
*
* VL (global input) REAL
* If RANGE='V', the lower bound of the interval to be searched
* for eigenvalues. Eigenvalues less than VL will not be
* returned. Not referenced if RANGE='A' or 'I'.
*
* VU (global input) REAL
* If RANGE='V', the upper bound of the interval to be searched
* for eigenvalues. Eigenvalues greater than VU will not be
* returned. VU must be greater than VL. Not referenced if
* RANGE='A' or 'I'.
*
* IL (global input) INTEGER
* If RANGE='I', the index (from smallest to largest) of the
* smallest eigenvalue to be returned. IL must be at least 1.
* Not referenced if RANGE='A' or 'V'.
*
* IU (global input) INTEGER
* If RANGE='I', the index (from smallest to largest) of the
* largest eigenvalue to be returned. IU must be at least IL
* and no greater than N. Not referenced if RANGE='A' or 'V'.
*
* ABSTOL (global input) REAL
* The absolute tolerance for the eigenvalues. An eigenvalue
* (or cluster) is considered to be located if it has been
* determined to lie in an interval whose width is ABSTOL or
* less. If ABSTOL is less than or equal to zero, then ULP*|T|
* will be used, where |T| means the 1-norm of T.
* Eigenvalues will be computed most accurately when ABSTOL is
* set to the underflow threshold SLAMCH('U'), not zero.
* Note : If eigenvectors are desired later by inverse iteration
* ( PSSTEIN ), ABSTOL should be set to 2*PSLAMCH('S').
*
* D (global input) REAL array, dimension (N)
* The n diagonal elements of the tridiagonal matrix T. To
* avoid overflow, the matrix must be scaled so that its largest
* entry is no greater than overflow**(1/2) * underflow**(1/4)
* in absolute value, and for greatest accuracy, it should not
* be much smaller than that.
*
* E (global input) REAL array, dimension (N-1)
* The (n-1) off-diagonal elements of the tridiagonal matrix T.
* To avoid overflow, the matrix must be scaled so that its
* largest entry is no greater than overflow**(1/2) *
* underflow**(1/4) in absolute value, and for greatest
* accuracy, it should not be much smaller than that.
*
* M (global output) INTEGER
* The actual number of eigenvalues found. 0 <= M <= N.
* (See also the description of INFO=2)
*
* NSPLIT (global output) INTEGER
* The number of diagonal blocks in the matrix T.
* 1 <= NSPLIT <= N.
*
* W (global output) REAL array, dimension (N)
* On exit, the first M elements of W contain the eigenvalues
* on all processes.
*
* IBLOCK (global output) INTEGER array, dimension (N)
* At each row/column j where E(j) is zero or small, the
* matrix T is considered to split into a block diagonal
* matrix. On exit IBLOCK(i) specifies which block (from 1
* to the number of blocks) the eigenvalue W(i) belongs to.
* NOTE: in the (theoretically impossible) event that bisection
* does not converge for some or all eigenvalues, INFO is set
* to 1 and the ones for which it did not are identified by a
* negative block number.
*
* ISPLIT (global output) INTEGER array, dimension (N)
* The splitting points, at which T breaks up into submatrices.
* The first submatrix consists of rows/columns 1 to ISPLIT(1),
* the second of rows/columns ISPLIT(1)+1 through ISPLIT(2),
* etc., and the NSPLIT-th consists of rows/columns
* ISPLIT(NSPLIT-1)+1 through ISPLIT(NSPLIT)=N.
* (Only the first NSPLIT elements will actually be used, but
* since the user cannot know a priori what value NSPLIT will
* have, N words must be reserved for ISPLIT.)
*
* WORK (local workspace) REAL array, dimension ( MAX( 5*N, 7 ) )
*
* LWORK (local input) INTEGER
* size of array WORK must be >= MAX( 5*N, 7 )
* If LWORK = -1, then LWORK is global input and a workspace
* query is assumed; the routine only calculates the minimum
* and optimal size for all work arrays. Each of these
* values is returned in the first entry of the corresponding
* work array, and no error message is issued by PXERBLA.
*
* IWORK (local workspace) INTEGER array, dimension ( MAX( 4*N, 14 ) )
*
* LIWORK (local input) INTEGER
* size of array IWORK must be >= MAX( 4*N, 14, NPROCS )
* If LIWORK = -1, then LIWORK is global input and a workspace
* query is assumed; the routine only calculates the minimum
* and optimal size for all work arrays. Each of these
* values is returned in the first entry of the corresponding
* work array, and no error message is issued by PXERBLA.
*
* INFO (global output) INTEGER
* = 0 : successful exit
* < 0 : if INFO = -i, the i-th argument had an illegal value
* > 0 : some or all of the eigenvalues failed to converge or
* were not computed:
* = 1 : Bisection failed to converge for some eigenvalues;
* these eigenvalues are flagged by a negative block
* number. The effect is that the eigenvalues may not
* be as accurate as the absolute and relative
* tolerances. This is generally caused by arithmetic
* which is less accurate than PSLAMCH says.
* = 2 : There is a mismatch between the number of
* eigenvalues output and the number desired.
* = 3 : RANGE='i', and the Gershgorin interval initially
* used was incorrect. No eigenvalues were computed.
* Probable cause: your machine has sloppy floating
* point arithmetic.
* Cure: Increase the PARAMETER "FUDGE", recompile,
* and try again.
*
* Internal Parameters
* ===================
*
* RELFAC REAL, default = 2.0
* The relative tolerance. An interval [a,b] lies within
* "relative tolerance" if b-a < RELFAC*ulp*max(|a|,|b|),
* where "ulp" is the machine precision (distance from 1 to
* the next larger floating point number.)
*
* FUDGE REAL, default = 2.0
* A "fudge factor" to widen the Gershgorin intervals. Ideally,
* a value of 1 should work, but on machines with sloppy
* arithmetic, this needs to be larger. The default for
* publicly released versions should be large enough to handle
* the worst machine around. Note that this has no effect
* on the accuracy of the solution.
*
* =====================================================================
*
* .. Intrinsic Functions ..
INTRINSIC ABS, ICHAR, MAX, MIN, MOD, REAL
* ..
* .. External Functions ..
LOGICAL LSAME
INTEGER BLACS_PNUM
REAL PSLAMCH
EXTERNAL LSAME, BLACS_PNUM, PSLAMCH
* ..
* .. External Subroutines ..
EXTERNAL BLACS_FREEBUFF, BLACS_GET, BLACS_GRIDEXIT,
$ BLACS_GRIDINFO, BLACS_GRIDMAP, GLOBCHK,
$ IGEBR2D, IGEBS2D, IGERV2D, IGESD2D, IGSUM2D,
$ PSLAEBZ, PSLAIECT, PSLAPDCT, PSLASNBT, PXERBLA,
$ SGEBR2D, SGEBS2D, SGERV2D, SGESD2D, SLASRT2
* ..
* .. Parameters ..
INTEGER BLOCK_CYCLIC_2D, DLEN_, DTYPE_, CTXT_, M_, N_,
$ MB_, NB_, RSRC_, CSRC_, LLD_
PARAMETER ( BLOCK_CYCLIC_2D = 1, DLEN_ = 9, DTYPE_ = 1,
$ CTXT_ = 2, M_ = 3, N_ = 4, MB_ = 5, NB_ = 6,
$ RSRC_ = 7, CSRC_ = 8, LLD_ = 9 )
INTEGER BIGNUM, DESCMULT
PARAMETER ( BIGNUM = 10000, DESCMULT = 100 )
REAL ZERO, ONE, TWO, FIVE, HALF
PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0, TWO = 2.0E+0,
$ FIVE = 5.0E+0, HALF = 1.0E+0 / TWO )
REAL FUDGE, RELFAC
PARAMETER ( FUDGE = 2.0E+0, RELFAC = 2.0E+0 )
* ..
* .. Local Scalars ..
LOGICAL LQUERY
INTEGER BLKNO, FOUND, I, IBEGIN, IEFLAG, IEND, IFRST,
$ IINFO, ILAST, ILOAD, IM, IMYLOAD, IN, INDRIW1,
$ INDRIW2, INDRW1, INDRW2, INXTLOAD, IOFF,
$ IORDER, IOUT, IRANGE, IRECV, IREM, ITMP1,
$ ITMP2, J, JB, K, LAST, LEXTRA, LREQ, MYCOL,
$ MYROW, NALPHA, NBETA, NCMP, NEIGINT, NEXT, NGL,
$ NGLOB, NGU, NINT, NPCOL, NPROW, OFFSET,
$ ONEDCONTEXT, P, PREV, REXTRA, RREQ, SELF,
$ TORECV
REAL ALPHA, ATOLI, BETA, BNORM, DRECV, DSEND, GL,
$ GU, INITVL, INITVU, LSAVE, MID, PIVMIN, RELTOL,
$ SAFEMN, TMP1, TMP2, TNORM, ULP
* ..
* .. Local Arrays ..
INTEGER IDUM( 5, 2 )
* ..
* .. Executable Statements ..
* This is just to keep ftnchek happy
IF( BLOCK_CYCLIC_2D*CSRC_*CTXT_*DLEN_*DTYPE_*LLD_*MB_*M_*NB_*N_*
$ RSRC_.LT.0 )RETURN
*
* Set up process grid
*
CALL BLACS_GRIDINFO( ICTXT, NPROW, NPCOL, MYROW, MYCOL )
*
INFO = 0
M = 0
*
* Decode RANGE
*
IF( LSAME( RANGE, 'A' ) ) THEN
IRANGE = 1
ELSE IF( LSAME( RANGE, 'V' ) ) THEN
IRANGE = 2
ELSE IF( LSAME( RANGE, 'I' ) ) THEN
IRANGE = 3
ELSE
IRANGE = 0
END IF
*
* Decode ORDER
*
IF( LSAME( ORDER, 'B' ) ) THEN
IORDER = 2
ELSE IF( LSAME( ORDER, 'E' ) .OR. LSAME( ORDER, 'A' ) ) THEN
IORDER = 1
ELSE
IORDER = 0
END IF
*
* Check for Errors
*
IF( NPROW.EQ.-1 ) THEN
INFO = -1
ELSE
*
* Get machine constants
*
SAFEMN = PSLAMCH( ICTXT, 'S' )
ULP = PSLAMCH( ICTXT, 'P' )
RELTOL = ULP*RELFAC
IDUM( 1, 1 ) = ICHAR( RANGE )
IDUM( 1, 2 ) = 2
IDUM( 2, 1 ) = ICHAR( ORDER )
IDUM( 2, 2 ) = 3
IDUM( 3, 1 ) = N
IDUM( 3, 2 ) = 4
NGLOB = 5
IF( IRANGE.EQ.3 ) THEN
IDUM( 4, 1 ) = IL
IDUM( 4, 2 ) = 7
IDUM( 5, 1 ) = IU
IDUM( 5, 2 ) = 8
ELSE
IDUM( 4, 1 ) = 0
IDUM( 4, 2 ) = 0
IDUM( 5, 1 ) = 0
IDUM( 5, 2 ) = 0
END IF
IF( MYROW.EQ.0 .AND. MYCOL.EQ.0 ) THEN
WORK( 1 ) = ABSTOL
IF( IRANGE.EQ.2 ) THEN
WORK( 2 ) = VL
WORK( 3 ) = VU
ELSE
WORK( 2 ) = ZERO
WORK( 3 ) = ZERO
END IF
CALL SGEBS2D( ICTXT, 'ALL', ' ', 3, 1, WORK, 3 )
ELSE
CALL SGEBR2D( ICTXT, 'ALL', ' ', 3, 1, WORK, 3, 0, 0 )
END IF
LQUERY = ( LWORK.EQ.-1 .OR. LIWORK.EQ.-1 )
IF( INFO.EQ.0 ) THEN
IF( IRANGE.EQ.0 ) THEN
INFO = -2
ELSE IF( IORDER.EQ.0 ) THEN
INFO = -3
ELSE IF( IRANGE.EQ.2 .AND. VL.GE.VU ) THEN
INFO = -5
ELSE IF( IRANGE.EQ.3 .AND. ( IL.LT.1 .OR. IL.GT.MAX( 1,
$ N ) ) ) THEN
INFO = -6
ELSE IF( IRANGE.EQ.3 .AND. ( IU.LT.MIN( N,
$ IL ) .OR. IU.GT.N ) ) THEN
INFO = -7
ELSE IF( LWORK.LT.MAX( 5*N, 7 ) .AND. .NOT.LQUERY ) THEN
INFO = -18
ELSE IF( LIWORK.LT.MAX( 4*N, 14, NPROW*NPCOL ) .AND. .NOT.
$ LQUERY ) THEN
INFO = -20
ELSE IF( IRANGE.EQ.2 .AND. ( ABS( WORK( 2 )-VL ).GT.FIVE*
$ ULP*ABS( VL ) ) ) THEN
INFO = -5
ELSE IF( IRANGE.EQ.2 .AND. ( ABS( WORK( 3 )-VU ).GT.FIVE*
$ ULP*ABS( VU ) ) ) THEN
INFO = -6
ELSE IF( ABS( WORK( 1 )-ABSTOL ).GT.FIVE*ULP*ABS( ABSTOL ) )
$ THEN
INFO = -9
END IF
END IF
IF( INFO.EQ.0 )
$ INFO = BIGNUM
CALL GLOBCHK( ICTXT, NGLOB, IDUM, 5, IWORK, INFO )
IF( INFO.EQ.BIGNUM ) THEN
INFO = 0
ELSE IF( MOD( INFO, DESCMULT ).EQ.0 ) THEN
INFO = -INFO / DESCMULT
ELSE
INFO = -INFO
END IF
END IF
WORK( 1 ) = REAL( MAX( 5*N, 7 ) )
IWORK( 1 ) = MAX( 4*N, 14, NPROW*NPCOL )
*
IF( INFO.NE.0 ) THEN
CALL PXERBLA( ICTXT, 'PSSTEBZ', -INFO )
RETURN
ELSE IF( LWORK.EQ.-1 .AND. LIWORK.EQ.-1 ) THEN
RETURN
END IF
*
*
* Quick return if possible
*
IF( N.EQ.0 )
$ RETURN
*
K = 1
DO 20 I = 0, NPROW - 1
DO 10 J = 0, NPCOL - 1
IWORK( K ) = BLACS_PNUM( ICTXT, I, J )
K = K + 1
10 CONTINUE
20 CONTINUE
*
P = NPROW*NPCOL
NPROW = 1
NPCOL = P
*
CALL BLACS_GET( ICTXT, 10, ONEDCONTEXT )
CALL BLACS_GRIDMAP( ONEDCONTEXT, IWORK, NPROW, NPROW, NPCOL )
CALL BLACS_GRIDINFO( ONEDCONTEXT, I, J, K, SELF )
*
* Simplifications:
*
IF( IRANGE.EQ.3 .AND. IL.EQ.1 .AND. IU.EQ.N )
$ IRANGE = 1
*
NEXT = MOD( SELF+1, P )
PREV = MOD( P+SELF-1, P )
*
* Compute squares of off-diagonals, splitting points and pivmin.
* Interleave diagonals and off-diagonals.
*
INDRW1 = MAX( 2*N, 4 )
INDRW2 = INDRW1 + 2*N
INDRIW1 = MAX( 2*N, 8 )
NSPLIT = 1
WORK( INDRW1+2*N ) = ZERO
PIVMIN = ONE
*
DO 30 I = 1, N - 1
TMP1 = E( I )**2
J = 2*I
WORK( INDRW1+J-1 ) = D( I )
IF( ABS( D( I+1 )*D( I ) )*ULP**2+SAFEMN.GT.TMP1 ) THEN
ISPLIT( NSPLIT ) = I
NSPLIT = NSPLIT + 1
WORK( INDRW1+J ) = ZERO
ELSE
WORK( INDRW1+J ) = TMP1
PIVMIN = MAX( PIVMIN, TMP1 )
END IF
30 CONTINUE
WORK( INDRW1+2*N-1 ) = D( N )
ISPLIT( NSPLIT ) = N
PIVMIN = PIVMIN*SAFEMN
*
* Compute Gershgorin interval [gl,gu] for entire matrix
*
GU = D( 1 )
GL = D( 1 )
TMP1 = ZERO
*
DO 40 I = 1, N - 1
TMP2 = ABS( E( I ) )
GU = MAX( GU, D( I )+TMP1+TMP2 )
GL = MIN( GL, D( I )-TMP1-TMP2 )
TMP1 = TMP2
40 CONTINUE
GU = MAX( GU, D( N )+TMP1 )
GL = MIN( GL, D( N )-TMP1 )
TNORM = MAX( ABS( GL ), ABS( GU ) )
GL = GL - FUDGE*TNORM*ULP*N - FUDGE*TWO*PIVMIN
GU = GU + FUDGE*TNORM*ULP*N + FUDGE*PIVMIN
*
IF( ABSTOL.LE.ZERO ) THEN
ATOLI = ULP*TNORM
ELSE
ATOLI = ABSTOL
END IF
*
* Find out if on an IEEE machine, the sign bit is the
* 32nd bit (Big Endian) or the 64th bit (Little Endian)
*
IF( IRANGE.EQ.1 .OR. NSPLIT.EQ.1 ) THEN
CALL PSLASNBT( IEFLAG )
ELSE
IEFLAG = 0
END IF
LEXTRA = 0
REXTRA = 0
*
* Form Initial Interval containing desired eigenvalues
*
IF( IRANGE.EQ.1 ) THEN
INITVL = GL
INITVU = GU
WORK( 1 ) = GL
WORK( 2 ) = GU
IWORK( 1 ) = 0
IWORK( 2 ) = N
IFRST = 1
ILAST = N
ELSE IF( IRANGE.EQ.2 ) THEN
IF( VL.GT.GL ) THEN
IF( IEFLAG.EQ.0 ) THEN
CALL PSLAPDCT( VL, N, WORK( INDRW1+1 ), PIVMIN, IFRST )
ELSE
CALL PSLAIECT( VL, N, WORK( INDRW1+1 ), IFRST )
END IF
IFRST = IFRST + 1
INITVL = VL
ELSE
INITVL = GL
IFRST = 1
END IF
IF( VU.LT.GU ) THEN
IF( IEFLAG.EQ.0 ) THEN
CALL PSLAPDCT( VU, N, WORK( INDRW1+1 ), PIVMIN, ILAST )
ELSE
CALL PSLAIECT( VU, N, WORK( INDRW1+1 ), ILAST )
END IF
INITVU = VU
ELSE
INITVU = GU
ILAST = N
END IF
WORK( 1 ) = INITVL
WORK( 2 ) = INITVU
IWORK( 1 ) = IFRST - 1
IWORK( 2 ) = ILAST
ELSE IF( IRANGE.EQ.3 ) THEN
WORK( 1 ) = GL
WORK( 2 ) = GU
IWORK( 1 ) = 0
IWORK( 2 ) = N
IWORK( 5 ) = IL - 1
IWORK( 6 ) = IU
CALL PSLAEBZ( 0, N, 2, 1, ATOLI, RELTOL, PIVMIN,
$ WORK( INDRW1+1 ), IWORK( 5 ), WORK, IWORK, NINT,
$ LSAVE, IEFLAG, IINFO )
IF( IINFO.NE.0 ) THEN
INFO = 3
GO TO 230
END IF
IF( NINT.GT.1 ) THEN
IF( IWORK( 5 ).EQ.IL-1 ) THEN
WORK( 2 ) = WORK( 4 )
IWORK( 2 ) = IWORK( 4 )
ELSE
WORK( 1 ) = WORK( 3 )
IWORK( 1 ) = IWORK( 3 )
END IF
IF( IWORK( 1 ).LT.0 .OR. IWORK( 1 ).GT.IL-1 .OR.
$ IWORK( 2 ).LE.MIN( IU-1, IWORK( 1 ) ) .OR.
$ IWORK( 2 ).GT.N ) THEN
INFO = 3
GO TO 230
END IF
END IF
LEXTRA = IL - 1 - IWORK( 1 )
REXTRA = IWORK( 2 ) - IU
INITVL = WORK( 1 )
INITVU = WORK( 2 )
IFRST = IL
ILAST = IU
END IF
* NVL = IFRST - 1
* NVU = ILAST
GL = INITVL
GU = INITVU
NGL = IWORK( 1 )
NGU = IWORK( 2 )
IM = 0
FOUND = 0
INDRIW2 = INDRIW1 + NGU - NGL
IEND = 0
IF( IFRST.GT.ILAST )
$ GO TO 100
IF( IFRST.EQ.1 .AND. ILAST.EQ.N )
$ IRANGE = 1
*
* Find Eigenvalues -- Loop Over Blocks
*
DO 90 JB = 1, NSPLIT
IOFF = IEND
IBEGIN = IOFF + 1
IEND = ISPLIT( JB )
IN = IEND - IOFF
IF( JB.NE.1 ) THEN
IF( IRANGE.NE.1 ) THEN
FOUND = IM
*
* Find total number of eigenvalues found thus far
*
CALL IGSUM2D( ONEDCONTEXT, 'All', ' ', 1, 1, FOUND, 1,
$ -1, -1 )
ELSE
FOUND = IOFF
END IF
END IF
* IF( SELF.GE.P )
* $ GO TO 30
IF( IN.NE.N ) THEN
*
* Compute Gershgorin interval [gl,gu] for split matrix
*
GU = D( IBEGIN )
GL = D( IBEGIN )
TMP1 = ZERO
*
DO 50 J = IBEGIN, IEND - 1
TMP2 = ABS( E( J ) )
GU = MAX( GU, D( J )+TMP1+TMP2 )
GL = MIN( GL, D( J )-TMP1-TMP2 )
TMP1 = TMP2
50 CONTINUE
*
GU = MAX( GU, D( IEND )+TMP1 )
GL = MIN( GL, D( IEND )-TMP1 )
BNORM = MAX( ABS( GL ), ABS( GU ) )
GL = GL - FUDGE*BNORM*ULP*IN - FUDGE*PIVMIN
GU = GU + FUDGE*BNORM*ULP*IN + FUDGE*PIVMIN
*
* Compute ATOLI for the current submatrix
*
IF( ABSTOL.LE.ZERO ) THEN
ATOLI = ULP*BNORM
ELSE
ATOLI = ABSTOL
END IF
*
IF( GL.LT.INITVL ) THEN
GL = INITVL
IF( IEFLAG.EQ.0 ) THEN
CALL PSLAPDCT( GL, IN, WORK( INDRW1+2*IOFF+1 ),
$ PIVMIN, NGL )
ELSE
CALL PSLAIECT( GL, IN, WORK( INDRW1+2*IOFF+1 ), NGL )
END IF
ELSE
NGL = 0
END IF
IF( GU.GT.INITVU ) THEN
GU = INITVU
IF( IEFLAG.EQ.0 ) THEN
CALL PSLAPDCT( GU, IN, WORK( INDRW1+2*IOFF+1 ),
$ PIVMIN, NGU )
ELSE
CALL PSLAIECT( GU, IN, WORK( INDRW1+2*IOFF+1 ), NGU )
END IF
ELSE
NGU = IN
END IF
IF( NGL.GE.NGU )
$ GO TO 90
WORK( 1 ) = GL
WORK( 2 ) = GU
IWORK( 1 ) = NGL
IWORK( 2 ) = NGU
END IF
OFFSET = FOUND - NGL
BLKNO = JB
*
* Do a static partitioning of work so that each process
* has to find an (almost) equal number of eigenvalues
*
NCMP = NGU - NGL
ILOAD = NCMP / P
IREM = NCMP - ILOAD*P
ITMP1 = MOD( SELF-FOUND, P )
IF( ITMP1.LT.0 )
$ ITMP1 = ITMP1 + P
IF( ITMP1.LT.IREM ) THEN
IMYLOAD = ILOAD + 1
ELSE
IMYLOAD = ILOAD
END IF
IF( IMYLOAD.EQ.0 ) THEN
GO TO 90
ELSE IF( IN.EQ.1 ) THEN
WORK( INDRW2+IM+1 ) = WORK( INDRW1+2*IOFF+1 )
IWORK( INDRIW1+IM+1 ) = BLKNO
IWORK( INDRIW2+IM+1 ) = OFFSET + 1
IM = IM + 1
GO TO 90
ELSE
INXTLOAD = ILOAD
ITMP2 = MOD( SELF+1-FOUND, P )
IF( ITMP2.LT.0 )
$ ITMP2 = ITMP2 + P
IF( ITMP2.LT.IREM )
$ INXTLOAD = INXTLOAD + 1
LREQ = NGL + ITMP1*ILOAD + MIN( IREM, ITMP1 )
RREQ = LREQ + IMYLOAD
IWORK( 5 ) = LREQ
IWORK( 6 ) = RREQ
TMP1 = WORK( 1 )
ITMP1 = IWORK( 1 )
CALL PSLAEBZ( 1, IN, 1, 1, ATOLI, RELTOL, PIVMIN,
$ WORK( INDRW1+2*IOFF+1 ), IWORK( 5 ), WORK,
$ IWORK, NINT, LSAVE, IEFLAG, IINFO )
ALPHA = WORK( 1 )
BETA = WORK( 2 )
NALPHA = IWORK( 1 )
NBETA = IWORK( 2 )
DSEND = BETA
IF( NBETA.GT.RREQ+INXTLOAD ) THEN
NBETA = RREQ
DSEND = ALPHA
END IF
LAST = MOD( FOUND+MIN( NGU-NGL, P )-1, P )
IF( LAST.LT.0 )
$ LAST = LAST + P
IF( SELF.NE.LAST ) THEN
CALL SGESD2D( ONEDCONTEXT, 1, 1, DSEND, 1, 0, NEXT )
CALL IGESD2D( ONEDCONTEXT, 1, 1, NBETA, 1, 0, NEXT )
END IF
IF( SELF.NE.MOD( FOUND, P ) ) THEN
CALL SGERV2D( ONEDCONTEXT, 1, 1, DRECV, 1, 0, PREV )
CALL IGERV2D( ONEDCONTEXT, 1, 1, IRECV, 1, 0, PREV )
ELSE
DRECV = TMP1
IRECV = ITMP1
END IF
WORK( 1 ) = MAX( LSAVE, DRECV )
IWORK( 1 ) = IRECV
ALPHA = MAX( ALPHA, WORK( 1 ) )
NALPHA = MAX( NALPHA, IRECV )
IF( BETA-ALPHA.LE.MAX( ATOLI, RELTOL*MAX( ABS( ALPHA ),
$ ABS( BETA ) ) ) ) THEN
MID = HALF*( ALPHA+BETA )
DO 60 J = OFFSET + NALPHA + 1, OFFSET + NBETA
WORK( INDRW2+IM+1 ) = MID
IWORK( INDRIW1+IM+1 ) = BLKNO
IWORK( INDRIW2+IM+1 ) = J
IM = IM + 1
60 CONTINUE
WORK( 2 ) = ALPHA
IWORK( 2 ) = NALPHA
END IF
END IF
NEIGINT = IWORK( 2 ) - IWORK( 1 )
IF( NEIGINT.LE.0 )
$ GO TO 90
*
* Call the main computational routine
*
CALL PSLAEBZ( 2, IN, NEIGINT, 1, ATOLI, RELTOL, PIVMIN,
$ WORK( INDRW1+2*IOFF+1 ), IWORK, WORK, IWORK,
$ IOUT, LSAVE, IEFLAG, IINFO )
IF( IINFO.NE.0 ) THEN
INFO = 1
END IF
DO 80 I = 1, IOUT
MID = HALF*( WORK( 2*I-1 )+WORK( 2*I ) )
IF( I.GT.IOUT-IINFO )
$ BLKNO = -BLKNO
DO 70 J = OFFSET + IWORK( 2*I-1 ) + 1,
$ OFFSET + IWORK( 2*I )
WORK( INDRW2+IM+1 ) = MID
IWORK( INDRIW1+IM+1 ) = BLKNO
IWORK( INDRIW2+IM+1 ) = J
IM = IM + 1
70 CONTINUE
80 CONTINUE
90 CONTINUE
*
* Find out total number of eigenvalues computed
*
100 CONTINUE
M = IM
CALL IGSUM2D( ONEDCONTEXT, 'ALL', ' ', 1, 1, M, 1, -1, -1 )
*
* Move the eigenvalues found to their final destinations
*
DO 130 I = 1, P
IF( SELF.EQ.I-1 ) THEN
CALL IGEBS2D( ONEDCONTEXT, 'ALL', ' ', 1, 1, IM, 1 )
IF( IM.NE.0 ) THEN
CALL IGEBS2D( ONEDCONTEXT, 'ALL', ' ', IM, 1,
$ IWORK( INDRIW2+1 ), IM )
CALL SGEBS2D( ONEDCONTEXT, 'ALL', ' ', IM, 1,
$ WORK( INDRW2+1 ), IM )
CALL IGEBS2D( ONEDCONTEXT, 'ALL', ' ', IM, 1,
$ IWORK( INDRIW1+1 ), IM )
DO 110 J = 1, IM
W( IWORK( INDRIW2+J ) ) = WORK( INDRW2+J )
IBLOCK( IWORK( INDRIW2+J ) ) = IWORK( INDRIW1+J )
110 CONTINUE
END IF
ELSE
CALL IGEBR2D( ONEDCONTEXT, 'ALL', ' ', 1, 1, TORECV, 1, 0,
$ I-1 )
IF( TORECV.NE.0 ) THEN
CALL IGEBR2D( ONEDCONTEXT, 'ALL', ' ', TORECV, 1, IWORK,
$ TORECV, 0, I-1 )
CALL SGEBR2D( ONEDCONTEXT, 'ALL', ' ', TORECV, 1, WORK,
$ TORECV, 0, I-1 )
CALL IGEBR2D( ONEDCONTEXT, 'ALL', ' ', TORECV, 1,
$ IWORK( N+1 ), TORECV, 0, I-1 )
DO 120 J = 1, TORECV
W( IWORK( J ) ) = WORK( J )
IBLOCK( IWORK( J ) ) = IWORK( N+J )
120 CONTINUE
END IF
END IF
130 CONTINUE
IF( NSPLIT.GT.1 .AND. IORDER.EQ.1 ) THEN
*
* Sort the eigenvalues
*
*
DO 140 I = 1, M
IWORK( M+I ) = I
140 CONTINUE
CALL SLASRT2( 'I', M, W, IWORK( M+1 ), IINFO )
DO 150 I = 1, M
IWORK( I ) = IBLOCK( I )
150 CONTINUE
DO 160 I = 1, M
IBLOCK( I ) = IWORK( IWORK( M+I ) )
160 CONTINUE
END IF
IF( IRANGE.EQ.3 .AND. ( LEXTRA.GT.0 .OR. REXTRA.GT.0 ) ) THEN
*
* Discard unwanted eigenvalues (occurs only when RANGE = 'I',
* and eigenvalues IL, and/or IU are in a cluster)
*
DO 170 I = 1, M
WORK( I ) = W( I )
IWORK( I ) = I
IWORK( M+I ) = I
170 CONTINUE
DO 190 I = 1, LEXTRA
ITMP1 = I
DO 180 J = I + 1, M
IF( WORK( J ).LT.WORK( ITMP1 ) ) THEN
ITMP1 = J
END IF
180 CONTINUE
TMP1 = WORK( I )
WORK( I ) = WORK( ITMP1 )
WORK( ITMP1 ) = TMP1
IWORK( IWORK( M+ITMP1 ) ) = I
IWORK( IWORK( M+I ) ) = ITMP1
ITMP2 = IWORK( M+I )
IWORK( M+I ) = IWORK( M+ITMP1 )
IWORK( M+ITMP1 ) = ITMP2
190 CONTINUE
DO 210 I = 1, REXTRA
ITMP1 = M - I + 1
DO 200 J = M - I, LEXTRA + 1, -1
IF( WORK( J ).GT.WORK( ITMP1 ) ) THEN
ITMP1 = J
END IF
200 CONTINUE
TMP1 = WORK( M-I+1 )
WORK( M-I+1 ) = WORK( ITMP1 )
WORK( ITMP1 ) = TMP1
IWORK( IWORK( M+ITMP1 ) ) = M - I + 1
IWORK( IWORK( 2*M-I+1 ) ) = ITMP1
ITMP2 = IWORK( 2*M-I+1 )
IWORK( 2*M-I+1 ) = IWORK( M+ITMP1 )
IWORK( M+ITMP1 ) = ITMP2
* IWORK( ITMP1 ) = 1
210 CONTINUE
J = 0
DO 220 I = 1, M
IF( IWORK( I ).GT.LEXTRA .AND. IWORK( I ).LE.M-REXTRA ) THEN
J = J + 1
W( J ) = WORK( IWORK( I ) )
IBLOCK( J ) = IBLOCK( I )
END IF
220 CONTINUE
M = M - LEXTRA - REXTRA
END IF
IF( M.NE.ILAST-IFRST+1 ) THEN
INFO = 2
END IF
*
230 CONTINUE
CALL BLACS_FREEBUFF( ONEDCONTEXT, 1 )
CALL BLACS_GRIDEXIT( ONEDCONTEXT )
RETURN
*
* End of PSSTEBZ
*
END
*
SUBROUTINE PSLAEBZ( IJOB, N, MMAX, MINP, ABSTOL, RELTOL, PIVMIN,
$ D, NVAL, INTVL, INTVLCT, MOUT, LSAVE, IEFLAG,
$ INFO )
*
* -- ScaLAPACK routine (version 1.7) --
* University of Tennessee, Knoxville, Oak Ridge National Laboratory,
* and University of California, Berkeley.
* November 15, 1997
*
*
* .. Scalar Arguments ..
INTEGER IEFLAG, IJOB, INFO, MINP, MMAX, MOUT, N
REAL ABSTOL, LSAVE, PIVMIN, RELTOL
* ..
* .. Array Arguments ..
INTEGER INTVLCT( * ), NVAL( * )
REAL D( * ), INTVL( * )
* ..
*
* Purpose
* =======
*
* PSLAEBZ contains the iteration loop which computes the eigenvalues
* contained in the input intervals [ INTVL(2*j-1), INTVL(2*j) ] where
* j = 1,...,MINP. It uses and computes the function N(w), which is
* the count of eigenvalues of a symmetric tridiagonal matrix less than
* or equal to its argument w.
*
* This is a ScaLAPACK internal subroutine and arguments are not
* checked for unreasonable values.
*
* Arguments
* =========
*
* IJOB (input) INTEGER
* Specifies the computation done by PSLAEBZ
* = 0 : Find an interval with desired values of N(w) at the
* endpoints of the interval.
* = 1 : Find a floating point number contained in the initial
* interval with a desired value of N(w).
* = 2 : Perform bisection iteration to find eigenvalues of T.
*
* N (input) INTEGER
* The order of the tridiagonal matrix T. N >= 1.
*
* MMAX (input) INTEGER
* The maximum number of intervals that may be generated. If
* more than MMAX intervals are generated, then PSLAEBZ will
* quit with INFO = MMAX+1.
*
* MINP (input) INTEGER
* The initial number of intervals. MINP <= MMAX.
*
* ABSTOL (input) REAL
* The minimum (absolute) width of an interval. When an interval
* is narrower than ABSTOL, or than RELTOL times the larger (in
* magnitude) endpoint, then it is considered to be sufficiently
* small, i.e., converged.
* This must be at least zero.
*
* RELTOL (input) REAL
* The minimum relative width of an interval. When an interval
* is narrower than ABSTOL, or than RELTOL times the larger (in
* magnitude) endpoint, then it is considered to be sufficiently
* small, i.e., converged.
* Note : This should be at least radix*machine epsilon.
*
* PIVMIN (input) REAL
* The minimum absolute of a "pivot" in the "paranoid"
* implementation of the Sturm sequence loop. This must be at
* least max_j |e(j)^2| *safe_min, and at least safe_min, where
* safe_min is at least the smallest number that can divide 1.0
* without overflow.
* See PSLAPDCT for the "paranoid" implementation of the Sturm
* sequence loop.
*
* D (input) REAL array, dimension (2*N - 1)
* Contains the diagonals and the squares of the off-diagonal
* elements of the tridiagonal matrix T. These elements are
* assumed to be interleaved in memory for better cache
* performance. The diagonal entries of T are in the entries
* D(1),D(3),...,D(2*N-1), while the squares of the off-diagonal
* entries are D(2),D(4),...,D(2*N-2). To avoid overflow, the
* matrix must be scaled so that its largest entry is no greater
* than overflow**(1/2) * underflow**(1/4) in absolute value,
* and for greatest accuracy, it should not be much smaller
* than that.
*
* NVAL (input/output) INTEGER array, dimension (4)
* If IJOB = 0, the desired values of N(w) are in NVAL(1) and
* NVAL(2).
* If IJOB = 1, NVAL(2) is the desired value of N(w).
* If IJOB = 2, not referenced.
* This array will, in general, be reordered on output.
*
* INTVL (input/output) REAL array, dimension (2*MMAX)
* The endpoints of the intervals. INTVL(2*j-1) is the left
* endpoint of the j-th interval, and INTVL(2*j) is the right
* endpoint of the j-th interval. The input intervals will,
* in general, be modified, split and reordered by the
* calculation.
* On input, INTVL contains the MINP input intervals.
* On output, INTVL contains the converged intervals.
*
* INTVLCT (input/output) INTEGER array, dimension (2*MMAX)
* The counts at the endpoints of the intervals. INTVLCT(2*j-1)
* is the count at the left endpoint of the j-th interval, i.e.,
* the function value N(INTVL(2*j-1)), and INTVLCT(2*j) is the
* count at the right endpoint of the j-th interval.
* On input, INTVLCT contains the counts at the endpoints of
* the MINP input intervals.
* On output, INTVLCT contains the counts at the endpoints of
* the converged intervals.
*
* MOUT (output) INTEGER
* The number of intervals output.
*
* LSAVE (output) REAL
* If IJOB = 0 or 2, not referenced.
* If IJOB = 1, this is the largest floating point number
* encountered which has count N(w) = NVAL(1).
*
* IEFLAG (input) INTEGER
* A flag which indicates whether N(w) should be speeded up by
* exploiting IEEE Arithmetic.
*
* INFO (output) INTEGER
* = 0 : All intervals converged.
* = 1 - MMAX : The last INFO intervals did not converge.
* = MMAX + 1 : More than MMAX intervals were generated.
*
* =====================================================================
*
* .. Intrinsic Functions ..
INTRINSIC ABS, INT, LOG, MAX, MIN
* ..
* .. External Subroutines ..
EXTERNAL PSLAECV, PSLAIECT, PSLAPDCT
* ..
* .. Parameters ..
REAL ZERO, TWO, HALF
PARAMETER ( ZERO = 0.0E+0, TWO = 2.0E+0,
$ HALF = 1.0E+0 / TWO )
* ..
* .. Local Scalars ..
INTEGER I, ITMAX, J, K, KF, KL, KLNEW, L, LCNT, LREQ,
$ NALPHA, NBETA, NMID, RCNT, RREQ
REAL ALPHA, BETA, MID
* ..
* .. Executable Statements ..
*
KF = 1
KL = MINP + 1
INFO = 0
IF( INTVL( 2 )-INTVL( 1 ).LE.ZERO ) THEN
INFO = MINP
MOUT = KF
RETURN
END IF
IF( IJOB.EQ.0 ) THEN
*
* Check if some input intervals have "converged"
*
CALL PSLAECV( 0, KF, KL, INTVL, INTVLCT, NVAL,
$ MAX( ABSTOL, PIVMIN ), RELTOL )
IF( KF.GE.KL )
$ GO TO 60
*
* Compute upper bound on number of iterations needed
*
ITMAX = INT( ( LOG( INTVL( 2 )-INTVL( 1 )+PIVMIN )-
$ LOG( PIVMIN ) ) / LOG( TWO ) ) + 2
*
* Iteration Loop
*
DO 20 I = 1, ITMAX
KLNEW = KL
DO 10 J = KF, KL - 1
K = 2*J
*
* Bisect the interval and find the count at that point
*
MID = HALF*( INTVL( K-1 )+INTVL( K ) )
IF( IEFLAG.EQ.0 ) THEN
CALL PSLAPDCT( MID, N, D, PIVMIN, NMID )
ELSE
CALL PSLAIECT( MID, N, D, NMID )
END IF
LREQ = NVAL( K-1 )
RREQ = NVAL( K )
IF( KL.EQ.1 )
$ NMID = MIN( INTVLCT( K ),
$ MAX( INTVLCT( K-1 ), NMID ) )
IF( NMID.LE.NVAL( K-1 ) ) THEN
INTVL( K-1 ) = MID
INTVLCT( K-1 ) = NMID
END IF
IF( NMID.GE.NVAL( K ) ) THEN
INTVL( K ) = MID
INTVLCT( K ) = NMID
END IF
IF( NMID.GT.LREQ .AND. NMID.LT.RREQ ) THEN
L = 2*KLNEW
INTVL( L-1 ) = MID
INTVL( L ) = INTVL( K )
INTVLCT( L-1 ) = NVAL( K )
INTVLCT( L ) = INTVLCT( K )
INTVL( K ) = MID
INTVLCT( K ) = NVAL( K-1 )
NVAL( L-1 ) = NVAL( K )
NVAL( L ) = NVAL( L-1 )
NVAL( K ) = NVAL( K-1 )
KLNEW = KLNEW + 1
END IF
10 CONTINUE
KL = KLNEW
CALL PSLAECV( 0, KF, KL, INTVL, INTVLCT, NVAL,
$ MAX( ABSTOL, PIVMIN ), RELTOL )
IF( KF.GE.KL )
$ GO TO 60
20 CONTINUE
ELSE IF( IJOB.EQ.1 ) THEN
ALPHA = INTVL( 1 )
BETA = INTVL( 2 )
NALPHA = INTVLCT( 1 )
NBETA = INTVLCT( 2 )
LSAVE = ALPHA
LREQ = NVAL( 1 )
RREQ = NVAL( 2 )
30 CONTINUE
IF( NBETA.NE.RREQ .AND. BETA-ALPHA.GT.
$ MAX( ABSTOL, RELTOL*MAX( ABS( ALPHA ), ABS( BETA ) ) ) )
$ THEN
*
* Bisect the interval and find the count at that point
*
MID = HALF*( ALPHA+BETA )
IF( IEFLAG.EQ.0 ) THEN
CALL PSLAPDCT( MID, N, D, PIVMIN, NMID )
ELSE
CALL PSLAIECT( MID, N, D, NMID )
END IF
NMID = MIN( NBETA, MAX( NALPHA, NMID ) )
IF( NMID.GE.RREQ ) THEN
BETA = MID
NBETA = NMID
ELSE
ALPHA = MID
NALPHA = NMID
IF( NMID.EQ.LREQ )
$ LSAVE = ALPHA
END IF
GO TO 30
END IF
KL = KF
INTVL( 1 ) = ALPHA
INTVL( 2 ) = BETA
INTVLCT( 1 ) = NALPHA
INTVLCT( 2 ) = NBETA
ELSE IF( IJOB.EQ.2 ) THEN
*
* Check if some input intervals have "converged"
*
CALL PSLAECV( 1, KF, KL, INTVL, INTVLCT, NVAL,
$ MAX( ABSTOL, PIVMIN ), RELTOL )
IF( KF.GE.KL )
$ GO TO 60
*
* Compute upper bound on number of iterations needed
*
ITMAX = INT( ( LOG( INTVL( 2 )-INTVL( 1 )+PIVMIN )-
$ LOG( PIVMIN ) ) / LOG( TWO ) ) + 2
*
* Iteration Loop
*
DO 50 I = 1, ITMAX
KLNEW = KL
DO 40 J = KF, KL - 1
K = 2*J
MID = HALF*( INTVL( K-1 )+INTVL( K ) )
IF( IEFLAG.EQ.0 ) THEN
CALL PSLAPDCT( MID, N, D, PIVMIN, NMID )
ELSE
CALL PSLAIECT( MID, N, D, NMID )
END IF
LCNT = INTVLCT( K-1 )
RCNT = INTVLCT( K )
NMID = MIN( RCNT, MAX( LCNT, NMID ) )
*
* Form New Interval(s)
*
IF( NMID.EQ.LCNT ) THEN
INTVL( K-1 ) = MID
ELSE IF( NMID.EQ.RCNT ) THEN
INTVL( K ) = MID
ELSE IF( KLNEW.LT.MMAX+1 ) THEN
L = 2*KLNEW
INTVL( L-1 ) = MID
INTVL( L ) = INTVL( K )
INTVLCT( L-1 ) = NMID
INTVLCT( L ) = INTVLCT( K )
INTVL( K ) = MID
INTVLCT( K ) = NMID
KLNEW = KLNEW + 1
ELSE
INFO = MMAX + 1
RETURN
END IF
40 CONTINUE
KL = KLNEW
CALL PSLAECV( 1, KF, KL, INTVL, INTVLCT, NVAL,
$ MAX( ABSTOL, PIVMIN ), RELTOL )
IF( KF.GE.KL )
$ GO TO 60
50 CONTINUE
END IF
60 CONTINUE
INFO = MAX( KL-KF, 0 )
MOUT = KL - 1
RETURN
*
* End of PSLAEBZ
*
END
*
*
SUBROUTINE PSLAECV( IJOB, KF, KL, INTVL, INTVLCT, NVAL, ABSTOL,
$ RELTOL )
*
* -- ScaLAPACK routine (version 1.7) --
* University of Tennessee, Knoxville, Oak Ridge National Laboratory,
* and University of California, Berkeley.
* November 15, 1997
*
*
* .. Scalar Arguments ..
INTEGER IJOB, KF, KL
REAL ABSTOL, RELTOL
* ..
* .. Array Arguments ..
INTEGER INTVLCT( * ), NVAL( * )
REAL INTVL( * )
* ..
*
* Purpose
* =======
*
* PSLAECV checks if the input intervals [ INTVL(2*i-1), INTVL(2*i) ],
* i = KF, ... , KL-1, have "converged".
* PSLAECV modifies KF to be the index of the last converged interval,
* i.e., on output, all intervals [ INTVL(2*i-1), INTVL(2*i) ], i < KF,
* have converged. Note that the input intervals may be reordered by
* PSLAECV.
*
* This is a SCALAPACK internal procedure and arguments are not checked
* for unreasonable values.
*
* Arguments
* =========
*
* IJOB (input) INTEGER
* Specifies the criterion for "convergence" of an interval.
* = 0 : When an interval is narrower than ABSTOL, or than
* RELTOL times the larger (in magnitude) endpoint, then
* it is considered to have "converged".
* = 1 : When an interval is narrower than ABSTOL, or than
* RELTOL times the larger (in magnitude) endpoint, or if
* the counts at the endpoints are identical to the counts
* specified by NVAL ( see NVAL ) then the interval is
* considered to have "converged".
*
* KF (input/output) INTEGER
* On input, the index of the first input interval is 2*KF-1.
* On output, the index of the last converged interval
* is 2*KF-3.
*
* KL (input) INTEGER
* The index of the last input interval is 2*KL-3.
*
* INTVL (input/output) REAL array, dimension (2*(KL-KF))
* The endpoints of the intervals. INTVL(2*j-1) is the left
* oendpoint f the j-th interval, and INTVL(2*j) is the right
* endpoint of the j-th interval. The input intervals will,
* in general, be reordered on output.
* On input, INTVL contains the KL-KF input intervals.
* On output, INTVL contains the converged intervals, 1 thru'
* KF-1, and the unconverged intervals, KF thru' KL-1.
*
* INTVLCT (input/output) INTEGER array, dimension (2*(KL-KF))
* The counts at the endpoints of the intervals. INTVLCT(2*j-1)
* is the count at the left endpoint of the j-th interval, i.e.,
* the function value N(INTVL(2*j-1)), and INTVLCT(2*j) is the
* count at the right endpoint of the j-th interval. This array
* will, in general, be reordered on output.
* See the comments in PSLAEBZ for more on the function N(w).
*
* NVAL (input/output) INTEGER array, dimension (2*(KL-KF))
* The desired counts, N(w), at the endpoints of the
* corresponding intervals. This array will, in general,
* be reordered on output.
*
* ABSTOL (input) REAL
* The minimum (absolute) width of an interval. When an interval
* is narrower than ABSTOL, or than RELTOL times the larger (in
* magnitude) endpoint, then it is considered to be sufficiently
* small, i.e., converged.
* Note : This must be at least zero.
*
* RELTOL (input) REAL
* The minimum relative width of an interval. When an interval
* is narrower than ABSTOL, or than RELTOL times the larger (in
* magnitude) endpoint, then it is considered to be sufficiently
* small, i.e., converged.
* Note : This should be at least radix*machine epsilon.
*
* =====================================================================
*
* .. Intrinsic Functions ..
INTRINSIC ABS, MAX
* ..
* .. Local Scalars ..
LOGICAL CONDN
INTEGER I, ITMP1, ITMP2, J, K, KFNEW
REAL TMP1, TMP2, TMP3, TMP4
* ..
* .. Executable Statements ..
*
KFNEW = KF
DO 10 I = KF, KL - 1
K = 2*I
TMP3 = INTVL( K-1 )
TMP4 = INTVL( K )
TMP1 = ABS( TMP4-TMP3 )
TMP2 = MAX( ABS( TMP3 ), ABS( TMP4 ) )
CONDN = TMP1.LT.MAX( ABSTOL, RELTOL*TMP2 )
IF( IJOB.EQ.0 )
$ CONDN = CONDN .OR. ( ( INTVLCT( K-1 ).EQ.NVAL( K-1 ) ) .AND.
$ INTVLCT( K ).EQ.NVAL( K ) )
IF( CONDN ) THEN
IF( I.GT.KFNEW ) THEN
*
* Reorder Intervals
*
J = 2*KFNEW
TMP1 = INTVL( K-1 )
TMP2 = INTVL( K )
ITMP1 = INTVLCT( K-1 )
ITMP2 = INTVLCT( K )
INTVL( K-1 ) = INTVL( J-1 )
INTVL( K ) = INTVL( J )
INTVLCT( K-1 ) = INTVLCT( J-1 )
INTVLCT( K ) = INTVLCT( J )
INTVL( J-1 ) = TMP1
INTVL( J ) = TMP2
INTVLCT( J-1 ) = ITMP1
INTVLCT( J ) = ITMP2
IF( IJOB.EQ.0 ) THEN
ITMP1 = NVAL( K-1 )
NVAL( K-1 ) = NVAL( J-1 )
NVAL( J-1 ) = ITMP1
ITMP1 = NVAL( K )
NVAL( K ) = NVAL( J )
NVAL( J ) = ITMP1
END IF
END IF
KFNEW = KFNEW + 1
END IF
10 CONTINUE
KF = KFNEW
RETURN
*
* End of PSLAECV
*
END
*
SUBROUTINE PSLAPDCT( SIGMA, N, D, PIVMIN, COUNT )
*
* -- ScaLAPACK routine (version 1.7) --
* University of Tennessee, Knoxville, Oak Ridge National Laboratory,
* and University of California, Berkeley.
* November 15, 1997
*
*
* .. Scalar Arguments ..
INTEGER COUNT, N
REAL PIVMIN, SIGMA
* ..
* .. Array Arguments ..
REAL D( * )
* ..
*
* Purpose
* =======
*
* PSLAPDCT counts the number of negative eigenvalues of (T - SIGMA I).
* This implementation of the Sturm Sequence loop has conditionals in
* the innermost loop to avoid overflow and determine the sign of a
* floating point number. PSLAPDCT will be referred to as the "paranoid"
* implementation of the Sturm Sequence loop.
*
* This is a SCALAPACK internal procedure and arguments are not checked
* for unreasonable values.
*
* Arguments
* =========
*
* SIGMA (input) REAL
* The shift. PSLAPDCT finds the number of eigenvalues of T less
* than or equal to SIGMA.
*
* N (input) INTEGER
* The order of the tridiagonal matrix T. N >= 1.
*
* D (input) REAL array, dimension (2*N - 1)
* Contains the diagonals and the squares of the off-diagonal
* elements of the tridiagonal matrix T. These elements are
* assumed to be interleaved in memory for better cache
* performance. The diagonal entries of T are in the entries
* D(1),D(3),...,D(2*N-1), while the squares of the off-diagonal
* entries are D(2),D(4),...,D(2*N-2). To avoid overflow, the
* matrix must be scaled so that its largest entry is no greater
* than overflow**(1/2) * underflow**(1/4) in absolute value,
* and for greatest accuracy, it should not be much smaller
* than that.
*
* PIVMIN (input) REAL
* The minimum absolute of a "pivot" in this "paranoid"
* implementation of the Sturm sequence loop. This must be at
* least max_j |e(j)^2| *safe_min, and at least safe_min, where
* safe_min is at least the smallest number that can divide 1.0
* without overflow.
*
* COUNT (output) INTEGER
* The count of the number of eigenvalues of T less than or
* equal to SIGMA.
*
* =====================================================================
*
* .. Intrinsic Functions ..
INTRINSIC ABS
* ..
* .. Parameters ..
REAL ZERO
PARAMETER ( ZERO = 0.0E+0 )
* ..
* .. Local Scalars ..
INTEGER I
REAL TMP
* ..
* .. Executable Statements ..
*
TMP = D( 1 ) - SIGMA
IF( ABS( TMP ).LE.PIVMIN )
$ TMP = -PIVMIN
COUNT = 0
IF( TMP.LE.ZERO )
$ COUNT = 1
DO 10 I = 3, 2*N - 1, 2
TMP = D( I ) - D( I-1 ) / TMP - SIGMA
IF( ABS( TMP ).LE.PIVMIN )
$ TMP = -PIVMIN
IF( TMP.LE.ZERO )
$ COUNT = COUNT + 1
10 CONTINUE
*
RETURN
*
* End of PSLAPDCT
*
END
|