1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
|
SUBROUTINE PZGETF2( M, N, A, IA, JA, DESCA, IPIV, INFO )
*
* -- ScaLAPACK routine (version 1.7) --
* University of Tennessee, Knoxville, Oak Ridge National Laboratory,
* and University of California, Berkeley.
* May 1, 1997
*
* .. Scalar Arguments ..
INTEGER IA, INFO, JA, M, N
* ..
* .. Array Arguments ..
INTEGER DESCA( * ), IPIV( * )
COMPLEX*16 A( * )
* ..
*
* Purpose
* =======
*
* PZGETF2 computes an LU factorization of a general M-by-N
* distributed matrix sub( A ) = A(IA:IA+M-1,JA:JA+N-1) using
* partial pivoting with row interchanges.
*
* The factorization has the form sub( A ) = P * L * U, where P is a
* permutation matrix, L is lower triangular with unit diagonal
* elements (lower trapezoidal if m > n), and U is upper triangular
* (upper trapezoidal if m < n).
*
* This is the right-looking Parallel Level 2 BLAS version of the
* algorithm.
*
* Notes
* =====
*
* Each global data object is described by an associated description
* vector. This vector stores the information required to establish
* the mapping between an object element and its corresponding process
* and memory location.
*
* Let A be a generic term for any 2D block cyclicly distributed array.
* Such a global array has an associated description vector DESCA.
* In the following comments, the character _ should be read as
* "of the global array".
*
* NOTATION STORED IN EXPLANATION
* --------------- -------------- --------------------------------------
* DTYPE_A(global) DESCA( DTYPE_ )The descriptor type. In this case,
* DTYPE_A = 1.
* CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
* the BLACS process grid A is distribu-
* ted over. The context itself is glo-
* bal, but the handle (the integer
* value) may vary.
* M_A (global) DESCA( M_ ) The number of rows in the global
* array A.
* N_A (global) DESCA( N_ ) The number of columns in the global
* array A.
* MB_A (global) DESCA( MB_ ) The blocking factor used to distribute
* the rows of the array.
* NB_A (global) DESCA( NB_ ) The blocking factor used to distribute
* the columns of the array.
* RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
* row of the array A is distributed.
* CSRC_A (global) DESCA( CSRC_ ) The process column over which the
* first column of the array A is
* distributed.
* LLD_A (local) DESCA( LLD_ ) The leading dimension of the local
* array. LLD_A >= MAX(1,LOCr(M_A)).
*
* Let K be the number of rows or columns of a distributed matrix,
* and assume that its process grid has dimension p x q.
* LOCr( K ) denotes the number of elements of K that a process
* would receive if K were distributed over the p processes of its
* process column.
* Similarly, LOCc( K ) denotes the number of elements of K that a
* process would receive if K were distributed over the q processes of
* its process row.
* The values of LOCr() and LOCc() may be determined via a call to the
* ScaLAPACK tool function, NUMROC:
* LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
* LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).
* An upper bound for these quantities may be computed by:
* LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
* LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A
*
* This routine requires N <= NB_A-MOD(JA-1, NB_A) and square block
* decomposition ( MB_A = NB_A ).
*
* Arguments
* =========
*
* M (global input) INTEGER
* The number of rows to be operated on, i.e. the number of rows
* of the distributed submatrix sub( A ). M >= 0.
*
* N (global input) INTEGER
* The number of columns to be operated on, i.e. the number of
* columns of the distributed submatrix sub( A ).
* NB_A-MOD(JA-1, NB_A) >= N >= 0.
*
* A (local input/local output) COMPLEX*16 pointer into the
* local memory to an array of dimension (LLD_A, LOCc(JA+N-1)).
* On entry, this array contains the local pieces of the M-by-N
* distributed matrix sub( A ). On exit, this array contains
* the local pieces of the factors L and U from the factoriza-
* tion sub( A ) = P*L*U; the unit diagonal elements of L are
* not stored.
*
* IA (global input) INTEGER
* The row index in the global array A indicating the first
* row of sub( A ).
*
* JA (global input) INTEGER
* The column index in the global array A indicating the
* first column of sub( A ).
*
* DESCA (global and local input) INTEGER array of dimension DLEN_.
* The array descriptor for the distributed matrix A.
*
* IPIV (local output) INTEGER array, dimension ( LOCr(M_A)+MB_A )
* This array contains the pivoting information.
* IPIV(i) -> The global row local row i was swapped with.
* This array is tied to the distributed matrix A.
*
* INFO (local output) INTEGER
* = 0: successful exit
* < 0: If the i-th argument is an array and the j-entry had
* an illegal value, then INFO = -(i*100+j), if the i-th
* argument is a scalar and had an illegal value, then
* INFO = -i.
* > 0: If INFO = K, U(IA+K-1,JA+K-1) is exactly zero.
* The factorization has been completed, but the factor U
* is exactly singular, and division by zero will occur if
* it is used to solve a system of equations.
*
* =====================================================================
*
* .. Parameters ..
INTEGER BLOCK_CYCLIC_2D, CSRC_, CTXT_, DLEN_, DTYPE_,
$ LLD_, MB_, M_, NB_, N_, RSRC_
PARAMETER ( BLOCK_CYCLIC_2D = 1, DLEN_ = 9, DTYPE_ = 1,
$ CTXT_ = 2, M_ = 3, N_ = 4, MB_ = 5, NB_ = 6,
$ RSRC_ = 7, CSRC_ = 8, LLD_ = 9 )
COMPLEX*16 ONE, ZERO
PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
* ..
* .. Local Scalars ..
CHARACTER ROWBTOP
INTEGER I, IACOL, IAROW, ICOFF, ICTXT, IIA, IROFF, J,
$ JJA, MN, MYCOL, MYROW, NPCOL, NPROW
COMPLEX*16 GMAX
* ..
* .. External Subroutines ..
EXTERNAL BLACS_ABORT, BLACS_GRIDINFO, CHK1MAT, IGEBR2D,
$ IGEBS2D, INFOG2L, PB_TOPGET, PXERBLA, PZAMAX,
$ PZGERU, PZSCAL, PZSWAP
* ..
* .. Intrinsic Functions ..
INTRINSIC MIN, MOD
* ..
* .. Executable Statements ..
*
* Get grid parameters.
*
ICTXT = DESCA( CTXT_ )
CALL BLACS_GRIDINFO( ICTXT, NPROW, NPCOL, MYROW, MYCOL )
*
* Test the input parameters.
*
INFO = 0
IF( NPROW.EQ.-1 ) THEN
INFO = -(600+CTXT_)
ELSE
CALL CHK1MAT( M, 1, N, 2, IA, JA, DESCA, 6, INFO )
IF( INFO.EQ.0 ) THEN
IROFF = MOD( IA-1, DESCA( MB_ ) )
ICOFF = MOD( JA-1, DESCA( NB_ ) )
IF( N+ICOFF.GT.DESCA( NB_ ) ) THEN
INFO = -2
ELSE IF( IROFF.NE.0 ) THEN
INFO = -4
ELSE IF( ICOFF.NE.0 ) THEN
INFO = -5
ELSE IF( DESCA( MB_ ).NE.DESCA( NB_ ) ) THEN
INFO = -(600+NB_)
END IF
END IF
END IF
*
IF( INFO.NE.0 ) THEN
CALL PXERBLA( ICTXT, 'PZGETF2', -INFO )
CALL BLACS_ABORT( ICTXT, 1 )
RETURN
END IF
*
* Quick return if possible
*
IF( M.EQ.0 .OR. N.EQ.0 )
$ RETURN
*
MN = MIN( M, N )
CALL INFOG2L( IA, JA, DESCA, NPROW, NPCOL, MYROW, MYCOL, IIA, JJA,
$ IAROW, IACOL )
CALL PB_TOPGET( ICTXT, 'Broadcast', 'Rowwise', ROWBTOP )
*
IF( MYCOL.EQ.IACOL ) THEN
DO 10 J = JA, JA+MN-1
I = IA + J - JA
*
* Find pivot and test for singularity.
*
CALL PZAMAX( M-J+JA, GMAX, IPIV( IIA+J-JA ), A, I, J,
$ DESCA, 1 )
IF( GMAX.NE.ZERO ) THEN
*
* Apply the row interchanges to columns JA:JA+N-1
*
CALL PZSWAP( N, A, I, JA, DESCA, DESCA( M_ ), A,
$ IPIV( IIA+J-JA ), JA, DESCA, DESCA( M_ ) )
*
* Compute elements I+1:IA+M-1 of J-th column.
*
IF( J-JA+1.LT.M )
$ CALL PZSCAL( M-J+JA-1, ONE / GMAX, A, I+1, J,
$ DESCA, 1 )
ELSE IF( INFO.EQ.0 ) THEN
INFO = J - JA + 1
END IF
*
* Update trailing submatrix
*
IF( J-JA+1.LT.MN ) THEN
CALL PZGERU( M-J+JA-1, N-J+JA-1, -ONE, A, I+1, J, DESCA,
$ 1, A, I, J+1, DESCA, DESCA( M_ ), A, I+1,
$ J+1, DESCA )
END IF
10 CONTINUE
*
CALL IGEBS2D( ICTXT, 'Rowwise', ROWBTOP, MN, 1, IPIV( IIA ),
$ MN )
*
ELSE
*
CALL IGEBR2D( ICTXT, 'Rowwise', ROWBTOP, MN, 1, IPIV( IIA ),
$ MN, MYROW, IACOL )
*
END IF
*
RETURN
*
* End of PZGETF2
*
END
|