1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441
|
SUBROUTINE PZHEEVD( JOBZ, UPLO, N, A, IA, JA, DESCA, W, Z, IZ, JZ,
$ DESCZ, WORK, LWORK, RWORK, LRWORK, IWORK,
$ LIWORK, INFO )
*
* -- ScaLAPACK routine (version 1.7) --
* University of Tennessee, Knoxville, Oak Ridge National Laboratory,
* and University of California, Berkeley.
* March 25, 2002
*
* .. Scalar Arguments ..
CHARACTER JOBZ, UPLO
INTEGER IA, INFO, IZ, JA, JZ, LIWORK, LRWORK, LWORK, N
* ..
* .. Array Arguments ..
INTEGER DESCA( * ), DESCZ( * ), IWORK( * )
DOUBLE PRECISION RWORK( * ), W( * )
COMPLEX*16 A( * ), WORK( * ), Z( * )
*
*
* Purpose
* =======
*
* PZHEEVD computes all the eigenvalues and eigenvectors of a Hermitian
* matrix A by using a divide and conquer algorithm.
*
* Arguments
* =========
*
* NP = the number of rows local to a given process.
* NQ = the number of columns local to a given process.
*
* JOBZ (input) CHARACTER*1
* = 'N': Compute eigenvalues only; (NOT IMPLEMENTED YET)
* = 'V': Compute eigenvalues and eigenvectors.
*
* UPLO (global input) CHARACTER*1
* Specifies whether the upper or lower triangular part of the
* symmetric matrix A is stored:
* = 'U': Upper triangular
* = 'L': Lower triangular
*
* N (global input) INTEGER
* The number of rows and columns of the matrix A. N >= 0.
*
* A (local input/workspace) block cyclic COMPLEX*16 array,
* global dimension (N, N), local dimension ( LLD_A,
* LOCc(JA+N-1) )
*
* On entry, the symmetric matrix A. If UPLO = 'U', only the
* upper triangular part of A is used to define the elements of
* the symmetric matrix. If UPLO = 'L', only the lower
* triangular part of A is used to define the elements of the
* symmetric matrix.
*
* On exit, the lower triangle (if UPLO='L') or the upper
* triangle (if UPLO='U') of A, including the diagonal, is
* destroyed.
*
* IA (global input) INTEGER
* A's global row index, which points to the beginning of the
* submatrix which is to be operated on.
*
* JA (global input) INTEGER
* A's global column index, which points to the beginning of
* the submatrix which is to be operated on.
*
* DESCA (global and local input) INTEGER array of dimension DLEN_.
* The array descriptor for the distributed matrix A.
* If DESCA( CTXT_ ) is incorrect, PZHEEV cannot guarantee
* correct error reporting.
*
* W (global output) DOUBLE PRECISION array, dimension (N)
* If INFO=0, the eigenvalues in ascending order.
*
* Z (local output) COMPLEX*16 array,
* global dimension (N, N),
* local dimension ( LLD_Z, LOCc(JZ+N-1) )
* Z contains the orthonormal eigenvectors of the matrix A.
*
* IZ (global input) INTEGER
* Z's global row index, which points to the beginning of the
* submatrix which is to be operated on.
*
* JZ (global input) INTEGER
* Z's global column index, which points to the beginning of
* the submatrix which is to be operated on.
*
* DESCZ (global and local input) INTEGER array of dimension DLEN_.
* The array descriptor for the distributed matrix Z.
* DESCZ( CTXT_ ) must equal DESCA( CTXT_ )
*
* WORK (local workspace/output) COMPLEX*16 array,
* dimension (LWORK)
* On output, WORK(1) returns the workspace needed for the
* computation.
*
* LWORK (local input) INTEGER
* If eigenvectors are requested:
* LWORK = N + ( NP0 + MQ0 + NB ) * NB,
* with NP0 = NUMROC( MAX( N, NB, 2 ), NB, 0, 0, NPROW )
* MQ0 = NUMROC( MAX( N, NB, 2 ), NB, 0, 0, NPCOL )
*
* If LWORK = -1, then LWORK is global input and a workspace
* query is assumed; the routine calculates the size for all
* work arrays. Each of these values is returned in the first
* entry of the corresponding work array, and no error message
* is issued by PXERBLA.
*
* RWORK (local workspace/output) DOUBLE PRECISION array,
* dimension (LRWORK)
* On output RWORK(1) returns the real workspace needed to
* guarantee completion. If the input parameters are incorrect,
* RWORK(1) may also be incorrect.
*
* LRWORK (local input) INTEGER
* Size of RWORK array.
* LRWORK >= 1 + 9*N + 3*NP*NQ,
* NP = NUMROC( N, NB, MYROW, IAROW, NPROW )
* NQ = NUMROC( N, NB, MYCOL, IACOL, NPCOL )
*
* IWORK (local workspace/output) INTEGER array, dimension (LIWORK)
* On output IWORK(1) returns the integer workspace needed.
*
* LIWORK (input) INTEGER
* The dimension of the array IWORK.
* LIWORK = 7*N + 8*NPCOL + 2
*
* INFO (global output) INTEGER
* = 0: successful exit
* < 0: If the i-th argument is an array and the j-entry had
* an illegal value, then INFO = -(i*100+j), if the i-th
* argument is a scalar and had an illegal value, then
* INFO = -i.
* > 0: If INFO = 1 through N, the i(th) eigenvalue did not
* converge in PDLAED3.
*
* Alignment requirements
* ======================
*
* The distributed submatrices sub( A ), sub( Z ) must verify
* some alignment properties, namely the following expression
* should be true:
* ( MB_A.EQ.NB_A.EQ.MB_Z.EQ.NB_Z .AND. IROFFA.EQ.ICOFFA .AND.
* IROFFA.EQ.0 .AND.IROFFA.EQ.IROFFZ. AND. IAROW.EQ.IZROW)
* with IROFFA = MOD( IA-1, MB_A )
* and ICOFFA = MOD( JA-1, NB_A ).
*
* Further Details
* ======= =======
*
* Contributed by Francoise Tisseur, University of Manchester.
*
* Reference: F. Tisseur and J. Dongarra, "A Parallel Divide and
* Conquer Algorithm for the Symmetric Eigenvalue Problem
* on Distributed Memory Architectures",
* SIAM J. Sci. Comput., 6:20 (1999), pp. 2223--2236.
* (see also LAPACK Working Note 132)
* http://www.netlib.org/lapack/lawns/lawn132.ps
*
* =====================================================================
*
* .. Parameters ..
INTEGER BLOCK_CYCLIC_2D, DLEN_, DTYPE_, CTXT_, M_, N_,
$ MB_, NB_, RSRC_, CSRC_, LLD_
PARAMETER ( BLOCK_CYCLIC_2D = 1, DLEN_ = 9, DTYPE_ = 1,
$ CTXT_ = 2, M_ = 3, N_ = 4, MB_ = 5, NB_ = 6,
$ RSRC_ = 7, CSRC_ = 8, LLD_ = 9 )
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
COMPLEX*16 CZERO, CONE
PARAMETER ( CZERO = ( 0.0D+0, 0.0D+0 ),
$ CONE = ( 1.0D+0, 0.0D+0 ) )
* ..
* .. Local Scalars ..
LOGICAL LOWER, LQUERY
INTEGER CSRC_A, I, IACOL, IAROW, ICOFFA, IINFO, IIZ,
$ INDD, INDE, INDE2, INDRWORK, INDTAU, INDWORK,
$ INDZ, IPR, IPZ, IROFFA, IROFFZ, ISCALE, IZCOL,
$ IZROW, J, JJZ, LDR, LDZ, LIWMIN, LLRWORK,
$ LLWORK, LRWMIN, LWMIN, MB_A, MYCOL, MYROW, NB,
$ NB_A, NN, NP0, NPCOL, NPROW, NQ, NQ0, OFFSET,
$ RSRC_A
DOUBLE PRECISION ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN, SIGMA,
$ SMLNUM
* ..
* .. Local Arrays ..
INTEGER DESCRZ( 9 ), IDUM1( 2 ), IDUM2( 2 )
* ..
* .. External Functions ..
LOGICAL LSAME
INTEGER INDXG2L, INDXG2P, NUMROC
DOUBLE PRECISION PZLANHE, PDLAMCH
EXTERNAL LSAME, INDXG2L, INDXG2P, NUMROC, PZLANHE,
$ PDLAMCH
* ..
* .. External Subroutines ..
EXTERNAL BLACS_GRIDINFO, CHK1MAT, DESCINIT, INFOG2L,
$ PZELGET, PZHETRD, PCHK2MAT, PZLASCL, PZLASET,
$ PZUNMTR, PDLARED1D, PDLASET, PDSTEDC, PXERBLA,
$ DSCAL
* ..
* .. Intrinsic Functions ..
INTRINSIC DCMPLX, ICHAR, MAX, MIN, MOD, DBLE, SQRT
* ..
* .. Executable Statements ..
* This is just to keep ftnchek and toolpack/1 happy
IF( BLOCK_CYCLIC_2D*CSRC_*CTXT_*DLEN_*DTYPE_*LLD_*MB_*M_*NB_*N_*
$ RSRC_.LT.0 )RETURN
*
INFO = 0
*
* Quick return
*
IF( N.EQ.0 )
$ RETURN
*
* Test the input arguments.
*
CALL BLACS_GRIDINFO( DESCA( CTXT_ ), NPROW, NPCOL, MYROW, MYCOL )
*
IF( NPROW.EQ.-1 ) THEN
INFO = -( 700+CTXT_ )
ELSE
CALL CHK1MAT( N, 2, N, 2, IA, JA, DESCA, 6, INFO )
CALL CHK1MAT( N, 2, N, 2, IZ, JZ, DESCZ, 11, INFO )
IF( INFO.EQ.0 ) THEN
LOWER = LSAME( UPLO, 'L' )
NB_A = DESCA( NB_ )
MB_A = DESCA( MB_ )
NB = NB_A
RSRC_A = DESCA( RSRC_ )
CSRC_A = DESCA( CSRC_ )
IROFFA = MOD( IA-1, MB_A )
ICOFFA = MOD( JA-1, NB_A )
IAROW = INDXG2P( IA, NB_A, MYROW, RSRC_A, NPROW )
IACOL = INDXG2P( JA, MB_A, MYCOL, CSRC_A, NPCOL )
NP0 = NUMROC( N, NB, MYROW, IAROW, NPROW )
NQ0 = NUMROC( N, NB, MYCOL, IACOL, NPCOL )
IROFFZ = MOD( IZ-1, MB_A )
CALL INFOG2L( IZ, JZ, DESCZ, NPROW, NPCOL, MYROW, MYCOL,
$ IIZ, JJZ, IZROW, IZCOL )
LQUERY = ( LWORK.EQ.-1 .OR. LIWORK.EQ.-1 .OR. LRWORK.EQ.-1 )
*
* Compute the total amount of space needed
*
NN = MAX( N, NB, 2 )
NQ = NUMROC( NN, NB, 0, 0, NPCOL )
LWMIN = N + ( NP0+NQ+NB )*NB
LRWMIN = 1 + 9*N + 3*NP0*NQ0
LIWMIN = 7*N + 8*NPCOL + 2
WORK( 1 ) = DCMPLX( LWMIN )
RWORK( 1 ) = DBLE( LRWMIN )
IWORK( 1 ) = LIWMIN
IF( .NOT.LSAME( JOBZ, 'V' ) ) THEN
INFO = -1
ELSE IF( .NOT.( LOWER .OR. LSAME( UPLO, 'U' ) ) ) THEN
INFO = -2
ELSE IF( LWORK.LT.LWMIN .AND. LWORK.NE.-1 ) THEN
INFO = -14
ELSE IF( LRWORK.LT.LRWMIN .AND. LRWORK.NE.-1 ) THEN
INFO = -16
ELSE IF( IROFFA.NE.0 ) THEN
INFO = -4
ELSE IF( DESCA( MB_ ).NE.DESCA( NB_ ) ) THEN
INFO = -( 700+NB_ )
ELSE IF( IROFFA.NE.IROFFZ ) THEN
INFO = -10
ELSE IF( IAROW.NE.IZROW ) THEN
INFO = -10
ELSE IF( DESCA( M_ ).NE.DESCZ( M_ ) ) THEN
INFO = -( 1200+M_ )
ELSE IF( DESCA( N_ ).NE.DESCZ( N_ ) ) THEN
INFO = -( 1200+N_ )
ELSE IF( DESCA( MB_ ).NE.DESCZ( MB_ ) ) THEN
INFO = -( 1200+MB_ )
ELSE IF( DESCA( NB_ ).NE.DESCZ( NB_ ) ) THEN
INFO = -( 1200+NB_ )
ELSE IF( DESCA( RSRC_ ).NE.DESCZ( RSRC_ ) ) THEN
INFO = -( 1200+RSRC_ )
ELSE IF( DESCA( CTXT_ ).NE.DESCZ( CTXT_ ) ) THEN
INFO = -( 1200+CTXT_ )
END IF
END IF
IF( LOWER ) THEN
IDUM1( 1 ) = ICHAR( 'L' )
ELSE
IDUM1( 1 ) = ICHAR( 'U' )
END IF
IDUM2( 1 ) = 2
IF( LWORK.EQ.-1 ) THEN
IDUM1( 2 ) = -1
ELSE
IDUM1( 2 ) = 1
END IF
IDUM2( 2 ) = 14
CALL PCHK2MAT( N, 3, N, 3, IA, JA, DESCA, 7, N, 3, N, 3, IZ,
$ JZ, DESCZ, 11, 2, IDUM1, IDUM2, INFO )
END IF
*
IF( INFO.NE.0 ) THEN
CALL PXERBLA( DESCA( CTXT_ ), 'PZHEEVD', -INFO )
RETURN
ELSE IF( LQUERY ) THEN
RETURN
END IF
*
* Get machine constants.
*
SAFMIN = PDLAMCH( DESCA( CTXT_ ), 'Safe minimum' )
EPS = PDLAMCH( DESCA( CTXT_ ), 'Precision' )
SMLNUM = SAFMIN / EPS
BIGNUM = ONE / SMLNUM
RMIN = SQRT( SMLNUM )
RMAX = MIN( SQRT( BIGNUM ), ONE / SQRT( SQRT( SAFMIN ) ) )
*
* Set up pointers into the WORK array
*
INDTAU = 1
INDWORK = INDTAU + N
LLWORK = LWORK - INDWORK + 1
*
* Set up pointers into the RWORK array
*
INDE = 1
INDD = INDE + N
INDE2 = INDD + N
INDRWORK = INDE2 + N
LLRWORK = LRWORK - INDRWORK + 1
*
* Scale matrix to allowable range, if necessary.
*
ISCALE = 0
*
ANRM = PZLANHE( 'M', UPLO, N, A, IA, JA, DESCA,
$ RWORK( INDRWORK ) )
*
*
IF( ANRM.GT.ZERO .AND. ANRM.LT.RMIN ) THEN
ISCALE = 1
SIGMA = RMIN / ANRM
ELSE IF( ANRM.GT.RMAX ) THEN
ISCALE = 1
SIGMA = RMAX / ANRM
END IF
*
IF( ISCALE.EQ.1 ) THEN
CALL PZLASCL( UPLO, ONE, SIGMA, N, N, A, IA, JA, DESCA, IINFO )
END IF
*
* Reduce Hermitian matrix to tridiagonal form.
*
CALL PZHETRD( UPLO, N, A, IA, JA, DESCA, RWORK( INDD ),
$ RWORK( INDE2 ), WORK( INDTAU ), WORK( INDWORK ),
$ LLWORK, IINFO )
*
* Copy the values of D, E to all processes
*
* Here PxLARED1D is used to redistribute the tridiagonal matrix.
* PxLARED1D, however, doesn't yet workMx Mawith arbritary matrix
* distributions so we have PxELGET as a backup.
*
OFFSET = 0
IF( IA.EQ.1 .AND. JA.EQ.1 .AND. RSRC_A.EQ.0 .AND. CSRC_A.EQ.0 )
$ THEN
CALL PDLARED1D( N, IA, JA, DESCA, RWORK( INDD ), W,
$ RWORK( INDRWORK ), LLRWORK )
*
CALL PDLARED1D( N, IA, JA, DESCA, RWORK( INDE2 ),
$ RWORK( INDE ), RWORK( INDRWORK ), LLRWORK )
IF( .NOT.LOWER )
$ OFFSET = 1
ELSE
DO 10 I = 1, N
CALL PZELGET( 'A', ' ', WORK( INDWORK ), A, I+IA-1, I+JA-1,
$ DESCA )
W( I ) = DBLE( WORK( INDWORK ) )
10 CONTINUE
IF( LSAME( UPLO, 'U' ) ) THEN
DO 20 I = 1, N - 1
CALL PZELGET( 'A', ' ', WORK( INDWORK ), A, I+IA-1, I+JA,
$ DESCA )
RWORK( INDE+I-1 ) = DBLE( WORK( INDWORK ) )
20 CONTINUE
ELSE
DO 30 I = 1, N - 1
CALL PZELGET( 'A', ' ', WORK( INDWORK ), A, I+IA, I+JA-1,
$ DESCA )
RWORK( INDE+I-1 ) = DBLE( WORK( INDWORK ) )
30 CONTINUE
END IF
END IF
*
* Call PDSTEDC to compute eigenvalues and eigenvectors.
*
INDZ = INDE + N
INDRWORK = INDZ + NP0*NQ0
LLRWORK = LRWORK - INDRWORK + 1
LDR = MAX( 1, NP0 )
CALL DESCINIT( DESCRZ, DESCZ( M_ ), DESCZ( N_ ), DESCZ( MB_ ),
$ DESCZ( NB_ ), DESCZ( RSRC_ ), DESCZ( CSRC_ ),
$ DESCZ( CTXT_ ), LDR, INFO )
CALL PZLASET( 'Full', N, N, CZERO, CONE, Z, IZ, JZ, DESCZ )
CALL PDLASET( 'Full', N, N, ZERO, ONE, RWORK( INDZ ), 1, 1,
$ DESCRZ )
CALL PDSTEDC( 'I', N, W, RWORK( INDE+OFFSET ), RWORK( INDZ ), IZ,
$ JZ, DESCRZ, RWORK( INDRWORK ), LLRWORK, IWORK,
$ LIWORK, IINFO )
*
LDZ = DESCZ( LLD_ )
LDR = DESCRZ( LLD_ )
IIZ = INDXG2L( IZ, NB, MYROW, MYROW, NPROW )
JJZ = INDXG2L( JZ, NB, MYCOL, MYCOL, NPCOL )
IPZ = IIZ + ( JJZ-1 )*LDZ
IPR = INDZ - 1 + IIZ + ( JJZ-1 )*LDR
DO 50 J = 0, NQ0 - 1
DO 40 I = 0, NP0 - 1
Z( IPZ+I+J*LDZ ) = RWORK( IPR+I+J*LDR )
40 CONTINUE
50 CONTINUE
*
* Z = Q * Z
*
CALL PZUNMTR( 'L', UPLO, 'N', N, N, A, IA, JA, DESCA,
$ WORK( INDTAU ), Z, IZ, JZ, DESCZ, WORK( INDWORK ),
$ LLWORK, IINFO )
*
* If matrix was scaled, then rescale eigenvalues appropriately.
*
IF( ISCALE.EQ.1 ) THEN
CALL DSCAL( N, ONE / SIGMA, W, 1 )
END IF
*
WORK( 1 ) = DCMPLX( LWMIN )
RWORK( 1 ) = DBLE( LRWMIN )
IWORK( 1 ) = LIWMIN
*
RETURN
*
* End of PZHEEVD
*
END
|