File: pzheevd.f

package info (click to toggle)
scalapack 1.7.4-2
  • links: PTS
  • area: main
  • in suites: etch, etch-m68k
  • size: 34,004 kB
  • ctags: 30,444
  • sloc: fortran: 310,201; ansic: 64,027; makefile: 1,838; sh: 4
file content (441 lines) | stat: -rw-r--r-- 16,103 bytes parent folder | download | duplicates (7)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
      SUBROUTINE PZHEEVD( JOBZ, UPLO, N, A, IA, JA, DESCA, W, Z, IZ, JZ,
     $                    DESCZ, WORK, LWORK, RWORK, LRWORK, IWORK,
     $                    LIWORK, INFO )
*
*  -- ScaLAPACK routine (version 1.7) --
*     University of Tennessee, Knoxville, Oak Ridge National Laboratory,
*     and University of California, Berkeley.
*     March 25, 2002
*
*     .. Scalar Arguments ..
      CHARACTER          JOBZ, UPLO
      INTEGER            IA, INFO, IZ, JA, JZ, LIWORK, LRWORK, LWORK, N
*     ..
*     .. Array Arguments ..
      INTEGER            DESCA( * ), DESCZ( * ), IWORK( * )
      DOUBLE PRECISION   RWORK( * ), W( * )
      COMPLEX*16         A( * ), WORK( * ), Z( * )
*     
*
*  Purpose
*  =======
*
*  PZHEEVD computes all the eigenvalues and eigenvectors of a Hermitian
*  matrix A by using a divide and conquer algorithm.
*
*  Arguments
*  =========
*
*     NP = the number of rows local to a given process.
*     NQ = the number of columns local to a given process.
*
*  JOBZ    (input) CHARACTER*1
*          = 'N':  Compute eigenvalues only;    (NOT IMPLEMENTED YET)
*          = 'V':  Compute eigenvalues and eigenvectors.
*
*  UPLO    (global input) CHARACTER*1
*          Specifies whether the upper or lower triangular part of the
*          symmetric matrix A is stored:
*          = 'U':  Upper triangular
*          = 'L':  Lower triangular
*
*  N       (global input) INTEGER
*          The number of rows and columns of the matrix A.  N >= 0.
*
*  A       (local input/workspace) block cyclic COMPLEX*16 array,
*          global dimension (N, N), local dimension ( LLD_A,
*          LOCc(JA+N-1) )
*
*          On entry, the symmetric matrix A.  If UPLO = 'U', only the
*          upper triangular part of A is used to define the elements of
*          the symmetric matrix.  If UPLO = 'L', only the lower
*          triangular part of A is used to define the elements of the
*          symmetric matrix.
*
*          On exit, the lower triangle (if UPLO='L') or the upper
*          triangle (if UPLO='U') of A, including the diagonal, is
*          destroyed.
*
*  IA      (global input) INTEGER
*          A's global row index, which points to the beginning of the
*          submatrix which is to be operated on.
*
*  JA      (global input) INTEGER
*          A's global column index, which points to the beginning of
*          the submatrix which is to be operated on.
*
*  DESCA   (global and local input) INTEGER array of dimension DLEN_.
*          The array descriptor for the distributed matrix A.
*          If DESCA( CTXT_ ) is incorrect, PZHEEV cannot guarantee
*          correct error reporting.
*
*  W       (global output) DOUBLE PRECISION array, dimension (N)
*          If INFO=0, the eigenvalues in ascending order.
*
*  Z       (local output) COMPLEX*16 array,
*          global dimension (N, N),
*          local dimension ( LLD_Z, LOCc(JZ+N-1) )
*          Z contains the orthonormal eigenvectors of the matrix A.
*
*  IZ      (global input) INTEGER
*          Z's global row index, which points to the beginning of the
*          submatrix which is to be operated on.
*
*  JZ      (global input) INTEGER
*          Z's global column index, which points to the beginning of
*          the submatrix which is to be operated on.
*
*  DESCZ   (global and local input) INTEGER array of dimension DLEN_.
*          The array descriptor for the distributed matrix Z.
*          DESCZ( CTXT_ ) must equal DESCA( CTXT_ )
*
*  WORK    (local workspace/output) COMPLEX*16 array,
*          dimension (LWORK)
*          On output, WORK(1) returns the workspace needed for the
*          computation.
*
*  LWORK   (local input) INTEGER
*          If eigenvectors are requested:
*            LWORK = N + ( NP0 + MQ0 + NB ) * NB,
*          with  NP0 = NUMROC( MAX( N, NB, 2 ), NB, 0, 0, NPROW )
*                MQ0 = NUMROC( MAX( N, NB, 2 ), NB, 0, 0, NPCOL )
*
*          If LWORK = -1, then LWORK is global input and a workspace
*          query is assumed; the routine calculates the size for all
*          work arrays. Each of these values is returned in the first
*          entry of the corresponding work array, and no error message
*          is issued by PXERBLA.
*
*  RWORK   (local workspace/output) DOUBLE PRECISION array,
*          dimension (LRWORK)
*          On output RWORK(1) returns the real workspace needed to
*          guarantee completion.  If the input parameters are incorrect,
*          RWORK(1) may also be incorrect.
*
*  LRWORK  (local input) INTEGER
*          Size of RWORK array.
*          LRWORK >= 1 + 9*N + 3*NP*NQ,
*          NP = NUMROC( N, NB, MYROW, IAROW, NPROW )
*          NQ = NUMROC( N, NB, MYCOL, IACOL, NPCOL )
*
*  IWORK   (local workspace/output) INTEGER array, dimension (LIWORK)
*          On output IWORK(1) returns the integer workspace needed.
*
*  LIWORK  (input) INTEGER
*          The dimension of the array IWORK.
*          LIWORK = 7*N + 8*NPCOL + 2
*
*  INFO    (global output) INTEGER
*          = 0:  successful exit
*          < 0:  If the i-th argument is an array and the j-entry had
*                an illegal value, then INFO = -(i*100+j), if the i-th
*                argument is a scalar and had an illegal value, then
*                INFO = -i.
*          > 0:  If INFO = 1 through N, the i(th) eigenvalue did not
*                converge in PDLAED3.
*
*  Alignment requirements
*  ======================
*
*  The distributed submatrices sub( A ), sub( Z ) must verify
*  some alignment properties, namely the following expression
*  should be true:
*  ( MB_A.EQ.NB_A.EQ.MB_Z.EQ.NB_Z .AND. IROFFA.EQ.ICOFFA .AND.
*    IROFFA.EQ.0 .AND.IROFFA.EQ.IROFFZ. AND. IAROW.EQ.IZROW)
*    with IROFFA = MOD( IA-1, MB_A )
*     and ICOFFA = MOD( JA-1, NB_A ).
*
*  Further Details
*  ======= =======
*
*  Contributed by Francoise Tisseur, University of Manchester.
*
*  Reference:  F. Tisseur and J. Dongarra, "A Parallel Divide and
*              Conquer Algorithm for the Symmetric Eigenvalue Problem
*              on Distributed Memory Architectures",
*              SIAM J. Sci. Comput., 6:20 (1999), pp. 2223--2236.
*              (see also LAPACK Working Note 132)
*                http://www.netlib.org/lapack/lawns/lawn132.ps
*
*  =====================================================================
*
*     .. Parameters ..
      INTEGER            BLOCK_CYCLIC_2D, DLEN_, DTYPE_, CTXT_, M_, N_,
     $                   MB_, NB_, RSRC_, CSRC_, LLD_
      PARAMETER          ( BLOCK_CYCLIC_2D = 1, DLEN_ = 9, DTYPE_ = 1,
     $                   CTXT_ = 2, M_ = 3, N_ = 4, MB_ = 5, NB_ = 6,
     $                   RSRC_ = 7, CSRC_ = 8, LLD_ = 9 )
      DOUBLE PRECISION               ZERO, ONE
      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
      COMPLEX*16            CZERO, CONE
      PARAMETER          ( CZERO = ( 0.0D+0, 0.0D+0 ),
     $                   CONE = ( 1.0D+0, 0.0D+0 ) )
*     ..
*     .. Local Scalars ..
      LOGICAL            LOWER, LQUERY
      INTEGER            CSRC_A, I, IACOL, IAROW, ICOFFA, IINFO, IIZ,
     $                   INDD, INDE, INDE2, INDRWORK, INDTAU, INDWORK,
     $                   INDZ, IPR, IPZ, IROFFA, IROFFZ, ISCALE, IZCOL,
     $                   IZROW, J, JJZ, LDR, LDZ, LIWMIN, LLRWORK,
     $                   LLWORK, LRWMIN, LWMIN, MB_A, MYCOL, MYROW, NB,
     $                   NB_A, NN, NP0, NPCOL, NPROW, NQ, NQ0, OFFSET,
     $                   RSRC_A
      DOUBLE PRECISION   ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN, SIGMA,
     $                   SMLNUM
*     ..
*     .. Local Arrays ..
      INTEGER            DESCRZ( 9 ), IDUM1( 2 ), IDUM2( 2 )
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      INTEGER            INDXG2L, INDXG2P, NUMROC
      DOUBLE PRECISION   PZLANHE, PDLAMCH
      EXTERNAL           LSAME, INDXG2L, INDXG2P, NUMROC, PZLANHE,
     $                   PDLAMCH
*     ..
*     .. External Subroutines ..
      EXTERNAL           BLACS_GRIDINFO, CHK1MAT, DESCINIT, INFOG2L,
     $                   PZELGET, PZHETRD, PCHK2MAT, PZLASCL, PZLASET,
     $                   PZUNMTR, PDLARED1D, PDLASET, PDSTEDC, PXERBLA,
     $                   DSCAL
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          DCMPLX, ICHAR, MAX, MIN, MOD, DBLE, SQRT
*     ..
*     .. Executable Statements ..
*       This is just to keep ftnchek and toolpack/1 happy
      IF( BLOCK_CYCLIC_2D*CSRC_*CTXT_*DLEN_*DTYPE_*LLD_*MB_*M_*NB_*N_*
     $    RSRC_.LT.0 )RETURN
*
      INFO = 0
*
*     Quick return
*
      IF( N.EQ.0 )
     $   RETURN
*
*     Test the input arguments.
*
      CALL BLACS_GRIDINFO( DESCA( CTXT_ ), NPROW, NPCOL, MYROW, MYCOL )
*
      IF( NPROW.EQ.-1 ) THEN
         INFO = -( 700+CTXT_ )
      ELSE 
         CALL CHK1MAT( N, 2, N, 2, IA, JA, DESCA, 6, INFO )
         CALL CHK1MAT( N, 2, N, 2, IZ, JZ, DESCZ, 11, INFO )
         IF( INFO.EQ.0 ) THEN
            LOWER = LSAME( UPLO, 'L' )
            NB_A = DESCA( NB_ )
            MB_A = DESCA( MB_ )
            NB = NB_A
            RSRC_A = DESCA( RSRC_ )
            CSRC_A = DESCA( CSRC_ )
            IROFFA = MOD( IA-1, MB_A )
            ICOFFA = MOD( JA-1, NB_A )
            IAROW = INDXG2P( IA, NB_A, MYROW, RSRC_A, NPROW )
            IACOL = INDXG2P( JA, MB_A, MYCOL, CSRC_A, NPCOL )
            NP0 = NUMROC( N, NB, MYROW, IAROW, NPROW )
            NQ0 = NUMROC( N, NB, MYCOL, IACOL, NPCOL )
            IROFFZ = MOD( IZ-1, MB_A )
            CALL INFOG2L( IZ, JZ, DESCZ, NPROW, NPCOL, MYROW, MYCOL,
     $                    IIZ, JJZ, IZROW, IZCOL )
            LQUERY = ( LWORK.EQ.-1 .OR. LIWORK.EQ.-1 .OR. LRWORK.EQ.-1 )
*
*           Compute the total amount of space needed
*
            NN = MAX( N, NB, 2 )
            NQ = NUMROC( NN, NB, 0, 0, NPCOL )
            LWMIN = N + ( NP0+NQ+NB )*NB
            LRWMIN = 1 + 9*N + 3*NP0*NQ0
            LIWMIN = 7*N + 8*NPCOL + 2
            WORK( 1 ) = DCMPLX( LWMIN )
            RWORK( 1 ) = DBLE( LRWMIN )
            IWORK( 1 ) = LIWMIN
            IF( .NOT.LSAME( JOBZ, 'V' ) ) THEN
               INFO = -1
            ELSE IF( .NOT.( LOWER .OR. LSAME( UPLO, 'U' ) ) ) THEN
               INFO = -2
            ELSE IF( LWORK.LT.LWMIN .AND. LWORK.NE.-1 ) THEN
               INFO = -14
            ELSE IF( LRWORK.LT.LRWMIN .AND. LRWORK.NE.-1 ) THEN
               INFO = -16
            ELSE IF( IROFFA.NE.0 ) THEN
               INFO = -4
            ELSE IF( DESCA( MB_ ).NE.DESCA( NB_ ) ) THEN
               INFO = -( 700+NB_ )
            ELSE IF( IROFFA.NE.IROFFZ ) THEN
               INFO = -10
            ELSE IF( IAROW.NE.IZROW ) THEN
               INFO = -10
            ELSE IF( DESCA( M_ ).NE.DESCZ( M_ ) ) THEN
               INFO = -( 1200+M_ )
            ELSE IF( DESCA( N_ ).NE.DESCZ( N_ ) ) THEN
               INFO = -( 1200+N_ )
            ELSE IF( DESCA( MB_ ).NE.DESCZ( MB_ ) ) THEN
               INFO = -( 1200+MB_ )
            ELSE IF( DESCA( NB_ ).NE.DESCZ( NB_ ) ) THEN
               INFO = -( 1200+NB_ )
            ELSE IF( DESCA( RSRC_ ).NE.DESCZ( RSRC_ ) ) THEN
               INFO = -( 1200+RSRC_ )
            ELSE IF( DESCA( CTXT_ ).NE.DESCZ( CTXT_ ) ) THEN
               INFO = -( 1200+CTXT_ )
            END IF
         END IF
         IF( LOWER ) THEN
            IDUM1( 1 ) = ICHAR( 'L' )
         ELSE
            IDUM1( 1 ) = ICHAR( 'U' )
         END IF
         IDUM2( 1 ) = 2
         IF( LWORK.EQ.-1 ) THEN
            IDUM1( 2 ) = -1
         ELSE
            IDUM1( 2 ) = 1
         END IF
         IDUM2( 2 ) = 14
         CALL PCHK2MAT( N, 3, N, 3, IA, JA, DESCA, 7, N, 3, N, 3, IZ,
     $                  JZ, DESCZ, 11, 2, IDUM1, IDUM2, INFO )
      END IF
*
      IF( INFO.NE.0 ) THEN
         CALL PXERBLA( DESCA( CTXT_ ), 'PZHEEVD', -INFO )
         RETURN
      ELSE IF( LQUERY ) THEN
         RETURN
      END IF
*
*     Get machine constants.
*
      SAFMIN = PDLAMCH( DESCA( CTXT_ ), 'Safe minimum' )
      EPS = PDLAMCH( DESCA( CTXT_ ), 'Precision' )
      SMLNUM = SAFMIN / EPS
      BIGNUM = ONE / SMLNUM
      RMIN = SQRT( SMLNUM )
      RMAX = MIN( SQRT( BIGNUM ), ONE / SQRT( SQRT( SAFMIN ) ) )
*
*     Set up pointers into the WORK array
*
      INDTAU = 1
      INDWORK = INDTAU + N
      LLWORK = LWORK - INDWORK + 1
*
*     Set up pointers into the RWORK array
*
      INDE = 1
      INDD = INDE + N
      INDE2 = INDD + N
      INDRWORK = INDE2 + N
      LLRWORK = LRWORK - INDRWORK + 1
*
*     Scale matrix to allowable range, if necessary.
*
      ISCALE = 0
*
      ANRM = PZLANHE( 'M', UPLO, N, A, IA, JA, DESCA,
     $       RWORK( INDRWORK ) )
*
*
      IF( ANRM.GT.ZERO .AND. ANRM.LT.RMIN ) THEN
         ISCALE = 1
         SIGMA = RMIN / ANRM
      ELSE IF( ANRM.GT.RMAX ) THEN
         ISCALE = 1
         SIGMA = RMAX / ANRM
      END IF
*
      IF( ISCALE.EQ.1 ) THEN
         CALL PZLASCL( UPLO, ONE, SIGMA, N, N, A, IA, JA, DESCA, IINFO )
      END IF
*
*     Reduce Hermitian matrix to tridiagonal form.
*
      CALL PZHETRD( UPLO, N, A, IA, JA, DESCA, RWORK( INDD ),
     $              RWORK( INDE2 ), WORK( INDTAU ), WORK( INDWORK ),
     $              LLWORK, IINFO )
*
*     Copy the values of D, E to all processes
*
*     Here PxLARED1D is used to redistribute the tridiagonal matrix.
*     PxLARED1D, however, doesn't yet workMx Mawith arbritary matrix
*     distributions so we have PxELGET as a backup.
*
      OFFSET = 0
      IF( IA.EQ.1 .AND. JA.EQ.1 .AND. RSRC_A.EQ.0 .AND. CSRC_A.EQ.0 )
     $     THEN
         CALL PDLARED1D( N, IA, JA, DESCA, RWORK( INDD ), W,
     $                   RWORK( INDRWORK ), LLRWORK )
*
         CALL PDLARED1D( N, IA, JA, DESCA, RWORK( INDE2 ),
     $                   RWORK( INDE ), RWORK( INDRWORK ), LLRWORK )
         IF( .NOT.LOWER )
     $      OFFSET = 1
      ELSE
         DO 10 I = 1, N
            CALL PZELGET( 'A', ' ', WORK( INDWORK ), A, I+IA-1, I+JA-1,
     $                    DESCA )
            W( I ) = DBLE( WORK( INDWORK ) )
   10    CONTINUE
         IF( LSAME( UPLO, 'U' ) ) THEN
            DO 20 I = 1, N - 1
               CALL PZELGET( 'A', ' ', WORK( INDWORK ), A, I+IA-1, I+JA,
     $                       DESCA )
               RWORK( INDE+I-1 ) = DBLE( WORK( INDWORK ) )
   20       CONTINUE
         ELSE
            DO 30 I = 1, N - 1
               CALL PZELGET( 'A', ' ', WORK( INDWORK ), A, I+IA, I+JA-1,
     $                       DESCA )
               RWORK( INDE+I-1 ) = DBLE( WORK( INDWORK ) )
   30       CONTINUE
         END IF
      END IF
*
*     Call PDSTEDC to compute eigenvalues and eigenvectors.
*
      INDZ = INDE + N
      INDRWORK = INDZ + NP0*NQ0
      LLRWORK = LRWORK - INDRWORK + 1
      LDR = MAX( 1, NP0 )
      CALL DESCINIT( DESCRZ, DESCZ( M_ ), DESCZ( N_ ), DESCZ( MB_ ),
     $               DESCZ( NB_ ), DESCZ( RSRC_ ), DESCZ( CSRC_ ),
     $               DESCZ( CTXT_ ), LDR, INFO )
      CALL PZLASET( 'Full', N, N, CZERO, CONE, Z, IZ, JZ, DESCZ )
      CALL PDLASET( 'Full', N, N, ZERO, ONE, RWORK( INDZ ), 1, 1,
     $              DESCRZ )
      CALL PDSTEDC( 'I', N, W, RWORK( INDE+OFFSET ), RWORK( INDZ ), IZ,
     $              JZ, DESCRZ, RWORK( INDRWORK ), LLRWORK, IWORK,
     $              LIWORK, IINFO )
*
      LDZ = DESCZ( LLD_ )
      LDR = DESCRZ( LLD_ )
      IIZ = INDXG2L( IZ, NB, MYROW, MYROW, NPROW )
      JJZ = INDXG2L( JZ, NB, MYCOL, MYCOL, NPCOL )
      IPZ = IIZ + ( JJZ-1 )*LDZ
      IPR = INDZ - 1 + IIZ + ( JJZ-1 )*LDR
      DO 50 J = 0, NQ0 - 1
         DO 40 I = 0, NP0 - 1
            Z( IPZ+I+J*LDZ ) = RWORK( IPR+I+J*LDR )
   40    CONTINUE
   50 CONTINUE
*
*     Z = Q * Z
*
      CALL PZUNMTR( 'L', UPLO, 'N', N, N, A, IA, JA, DESCA,
     $              WORK( INDTAU ), Z, IZ, JZ, DESCZ, WORK( INDWORK ),
     $              LLWORK, IINFO )
*
*     If matrix was scaled, then rescale eigenvalues appropriately.
*
      IF( ISCALE.EQ.1 ) THEN
         CALL DSCAL( N, ONE / SIGMA, W, 1 )
      END IF
*
      WORK( 1 ) = DCMPLX( LWMIN )
      RWORK( 1 ) = DBLE( LRWMIN )
      IWORK( 1 ) = LIWMIN
*
      RETURN
*
*     End of PZHEEVD
*
      END