1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
|
SUBROUTINE PZLACON( N, V, IV, JV, DESCV, X, IX, JX, DESCX, EST,
$ KASE )
*
* -- ScaLAPACK auxiliary routine (version 1.7) --
* University of Tennessee, Knoxville, Oak Ridge National Laboratory,
* and University of California, Berkeley.
* May 1, 1997
*
* .. Scalar Arguments ..
INTEGER IV, IX, JV, JX, KASE, N
DOUBLE PRECISION EST
* ..
* .. Array Arguments ..
INTEGER DESCV( * ), DESCX( * )
COMPLEX*16 V( * ), X( * )
* ..
*
* Purpose
* =======
*
* PZLACON estimates the 1-norm of a square, complex distributed matrix
* A. Reverse communication is used for evaluating matrix-vector
* products. X and V are aligned with the distributed matrix A, this
* information is implicitly contained within IV, IX, DESCV, and DESCX.
*
* Notes
* =====
*
* Each global data object is described by an associated description
* vector. This vector stores the information required to establish
* the mapping between an object element and its corresponding process
* and memory location.
*
* Let A be a generic term for any 2D block cyclicly distributed array.
* Such a global array has an associated description vector DESCA.
* In the following comments, the character _ should be read as
* "of the global array".
*
* NOTATION STORED IN EXPLANATION
* --------------- -------------- --------------------------------------
* DTYPE_A(global) DESCA( DTYPE_ )The descriptor type. In this case,
* DTYPE_A = 1.
* CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
* the BLACS process grid A is distribu-
* ted over. The context itself is glo-
* bal, but the handle (the integer
* value) may vary.
* M_A (global) DESCA( M_ ) The number of rows in the global
* array A.
* N_A (global) DESCA( N_ ) The number of columns in the global
* array A.
* MB_A (global) DESCA( MB_ ) The blocking factor used to distribute
* the rows of the array.
* NB_A (global) DESCA( NB_ ) The blocking factor used to distribute
* the columns of the array.
* RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
* row of the array A is distributed.
* CSRC_A (global) DESCA( CSRC_ ) The process column over which the
* first column of the array A is
* distributed.
* LLD_A (local) DESCA( LLD_ ) The leading dimension of the local
* array. LLD_A >= MAX(1,LOCr(M_A)).
*
* Let K be the number of rows or columns of a distributed matrix,
* and assume that its process grid has dimension p x q.
* LOCr( K ) denotes the number of elements of K that a process
* would receive if K were distributed over the p processes of its
* process column.
* Similarly, LOCc( K ) denotes the number of elements of K that a
* process would receive if K were distributed over the q processes of
* its process row.
* The values of LOCr() and LOCc() may be determined via a call to the
* ScaLAPACK tool function, NUMROC:
* LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
* LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).
* An upper bound for these quantities may be computed by:
* LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
* LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A
*
* Arguments
* =========
*
* N (global input) INTEGER
* The length of the distributed vectors V and X. N >= 0.
*
* V (local workspace) COMPLEX*16 pointer into the local
* memory to an array of dimension LOCr(N+MOD(IV-1,MB_V)). On
* the final return, V = A*W, where EST = norm(V)/norm(W)
* (W is not returned).
*
* IV (global input) INTEGER
* The row index in the global array V indicating the first
* row of sub( V ).
*
* JV (global input) INTEGER
* The column index in the global array V indicating the
* first column of sub( V ).
*
* DESCV (global and local input) INTEGER array of dimension DLEN_.
* The array descriptor for the distributed matrix V.
*
* X (local input/local output) COMPLEX*16 pointer into the
* local memory to an array of dimension
* LOCr(N+MOD(IX-1,MB_X)). On an intermediate return, X
* should be overwritten by
* A * X, if KASE=1,
* A' * X, if KASE=2,
* where A' is the conjugate transpose of A, and PZLACON must
* be re-called with all the other parameters unchanged.
*
* IX (global input) INTEGER
* The row index in the global array X indicating the first
* row of sub( X ).
*
* JX (global input) INTEGER
* The column index in the global array X indicating the
* first column of sub( X ).
*
* DESCX (global and local input) INTEGER array of dimension DLEN_.
* The array descriptor for the distributed matrix X.
*
*
* EST (global output) DOUBLE PRECISION
* An estimate (a lower bound) for norm(A).
*
* KASE (local input/local output) INTEGER
* On the initial call to PZLACON, KASE should be 0.
* On an intermediate return, KASE will be 1 or 2, indicating
* whether X should be overwritten by A * X or A' * X.
* On the final return from PZLACON, KASE will again be 0.
*
* Further Details
* ===============
*
* The serial version ZLACON has been contributed by Nick Higham,
* University of Manchester. It was originally named SONEST, dated
* March 16, 1988.
*
* Reference: N.J. Higham, "FORTRAN codes for estimating the one-norm of
* a real or complex matrix, with applications to condition estimation",
* ACM Trans. Math. Soft., vol. 14, no. 4, pp. 381-396, December 1988.
*
* =====================================================================
*
* .. Parameters ..
INTEGER BLOCK_CYCLIC_2D, CSRC_, CTXT_, DLEN_, DTYPE_,
$ LLD_, MB_, M_, NB_, N_, RSRC_
PARAMETER ( BLOCK_CYCLIC_2D = 1, DLEN_ = 9, DTYPE_ = 1,
$ CTXT_ = 2, M_ = 3, N_ = 4, MB_ = 5, NB_ = 6,
$ RSRC_ = 7, CSRC_ = 8, LLD_ = 9 )
INTEGER ITMAX
PARAMETER ( ITMAX = 5 )
DOUBLE PRECISION ONE, TWO
PARAMETER ( ONE = 1.0D+0, TWO = 2.0D+0 )
COMPLEX*16 CZERO, CONE
PARAMETER ( CZERO = ( 0.0D+0, 0.0D+0 ),
$ CONE = ( 1.0D+0, 0.0D+0 ) )
* ..
* .. Local Scalars ..
INTEGER I, ICTXT, IIVX, IMAXROW, IOFFVX, IROFF, ITER,
$ IVXCOL, IVXROW, J, JLAST, JJVX, JUMP, K,
$ MYCOL, MYROW, NP, NPCOL, NPROW
DOUBLE PRECISION ALTSGN, ESTOLD, SAFMIN, TEMP
COMPLEX*16 JLMAX, XMAX
* ..
* .. Local Arrays ..
COMPLEX*16 WORK( 2 )
* ..
* .. External Subroutines ..
EXTERNAL BLACS_GRIDINFO, INFOG2L, DGEBR2D,
$ DGEBS2D, PDZSUM1, PZELGET,
$ PZMAX1, ZCOPY, ZGEBR2D, ZGEBS2D
* ..
* .. External Functions ..
INTEGER INDXG2L, INDXG2P, INDXL2G, NUMROC
DOUBLE PRECISION PDLAMCH
EXTERNAL INDXG2L, INDXG2P, INDXL2G, NUMROC, PDLAMCH
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, DBLE, DCMPLX
* ..
* .. Save statement ..
SAVE
* ..
* .. Executable Statements ..
*
* Get grid parameters.
*
ICTXT = DESCX( CTXT_ )
CALL BLACS_GRIDINFO( ICTXT, NPROW, NPCOL, MYROW, MYCOL )
*
CALL INFOG2L( IX, JX, DESCX, NPROW, NPCOL, MYROW, MYCOL,
$ IIVX, JJVX, IVXROW, IVXCOL )
IF( MYCOL.NE.IVXCOL )
$ RETURN
IROFF = MOD( IX-1, DESCX( MB_ ) )
NP = NUMROC( N+IROFF, DESCX( MB_ ), MYROW, IVXROW, NPROW )
IF( MYROW.EQ.IVXROW )
$ NP = NP - IROFF
IOFFVX = IIVX + (JJVX-1)*DESCX( LLD_ )
*
SAFMIN = PDLAMCH( ICTXT, 'Safe minimum' )
IF( KASE.EQ.0 ) THEN
DO 10 I = IOFFVX, IOFFVX+NP-1
X( I ) = DCMPLX( ONE / DBLE( N ) )
10 CONTINUE
KASE = 1
JUMP = 1
RETURN
END IF
*
GO TO ( 20, 40, 70, 90, 120 )JUMP
*
* ................ ENTRY (JUMP = 1)
* FIRST ITERATION. X HAS BEEN OVERWRITTEN BY A*X
*
20 CONTINUE
IF( N.EQ.1 ) THEN
IF( MYROW.EQ.IVXROW ) THEN
V( IOFFVX ) = X( IOFFVX )
EST = ABS( V( IOFFVX ) )
CALL DGEBS2D( ICTXT, 'Columnwise', ' ', 1, 1, EST, 1 )
ELSE
CALL DGEBR2D( ICTXT, 'Columnwise', ' ', 1, 1, EST, 1,
$ IVXROW, MYCOL )
END IF
* ... QUIT
GO TO 130
END IF
CALL PDZSUM1( N, EST, X, IX, JX, DESCX, 1 )
IF( DESCX( M_ ).EQ.1 .AND. N.EQ.1 ) THEN
IF( MYROW.EQ.IVXROW ) THEN
CALL DGEBS2D( ICTXT, 'Columnwise', ' ', 1, 1, EST, 1 )
ELSE
CALL DGEBR2D( ICTXT, 'Columnwise', ' ', 1, 1, EST, 1,
$ IVXROW, MYCOL )
END IF
END IF
*
DO 30 I = IOFFVX, IOFFVX+NP-1
IF( ABS( X( I ) ).GT.SAFMIN ) THEN
X( I ) = X( I ) / DCMPLX( ABS( X( I ) ) )
ELSE
X( I ) = CONE
END IF
30 CONTINUE
KASE = 2
JUMP = 2
RETURN
*
* ................ ENTRY (JUMP = 2)
* FIRST ITERATION. X HAS BEEN OVERWRITTEN BY CTRANS(A)*X
*
40 CONTINUE
CALL PZMAX1( N, XMAX, J, X, IX, JX, DESCX, 1 )
IF( DESCX( M_ ).EQ.1 .AND. N.EQ.1 ) THEN
IF( MYROW.EQ.IVXROW ) THEN
WORK( 1 ) = XMAX
WORK( 2 ) = DCMPLX( DBLE( J ) )
CALL ZGEBS2D( ICTXT, 'Columnwise', ' ', 2, 1, WORK, 2 )
ELSE
CALL ZGEBR2D( ICTXT, 'Columnwise', ' ', 2, 1, WORK, 2,
$ IVXROW, MYCOL )
XMAX = WORK( 1 )
J = NINT( DBLE( WORK( 2 ) ) )
END IF
END IF
ITER = 2
*
* MAIN LOOP - ITERATIONS 2, 3,...,ITMAX
*
50 CONTINUE
DO 60 I = IOFFVX, IOFFVX+NP-1
X( I ) = CZERO
60 CONTINUE
IMAXROW = INDXG2P( J, DESCX( MB_ ), MYROW, DESCX( RSRC_ ), NPROW )
IF( MYROW.EQ.IMAXROW ) THEN
I = INDXG2L( J, DESCX( MB_ ), MYROW, DESCX( RSRC_ ), NPROW )
X( I ) = CONE
END IF
KASE = 1
JUMP = 3
RETURN
*
* ................ ENTRY (JUMP = 3)
* X HAS BEEN OVERWRITTEN BY A*X
*
70 CONTINUE
CALL ZCOPY( NP, X( IOFFVX ), 1, V( IOFFVX ), 1 )
ESTOLD = EST
CALL PDZSUM1( N, EST, V, IV, JV, DESCV, 1 )
IF( DESCV( M_ ).EQ.1 .AND. N.EQ.1 ) THEN
IF( MYROW.EQ.IVXROW ) THEN
CALL DGEBS2D( ICTXT, 'Columnwise', ' ', 1, 1, EST, 1 )
ELSE
CALL DGEBR2D( ICTXT, 'Columnwise', ' ', 1, 1, EST, 1,
$ IVXROW, MYCOL )
END IF
END IF
*
* TEST FOR CYCLING
IF( EST.LE.ESTOLD )
$ GO TO 100
*
DO 80 I = IOFFVX, IOFFVX+NP-1
IF( ABS( X( I ) ).GT.SAFMIN ) THEN
X( I ) = X( I ) / DCMPLX( ABS( X( I ) ) )
ELSE
X( I ) = CONE
END IF
80 CONTINUE
KASE = 2
JUMP = 4
RETURN
*
* ................ ENTRY (JUMP = 4)
* X HAS BEEN OVERWRITTEN BY CTRANS(A)*X
*
90 CONTINUE
JLAST = J
CALL PZMAX1( N, XMAX, J, X, IX, JX, DESCX, 1 )
IF( DESCX( M_ ).EQ.1 .AND. N.EQ.1 ) THEN
IF( MYROW.EQ.IVXROW ) THEN
WORK( 1 ) = XMAX
WORK( 2 ) = DCMPLX( DBLE( J ) )
CALL ZGEBS2D( ICTXT, 'Columnwise', ' ', 2, 1, WORK, 2 )
ELSE
CALL ZGEBR2D( ICTXT, 'Columnwise', ' ', 2, 1, WORK, 2,
$ IVXROW, MYCOL )
XMAX = WORK( 1 )
J = NINT( DBLE( WORK( 2 ) ) )
END IF
END IF
CALL PZELGET( 'Columnwise', ' ', JLMAX, X, JLAST, JX, DESCX )
IF( ( DBLE( JLMAX ).NE.ABS( DBLE( XMAX ) ) ).AND.
$ ( ITER.LT.ITMAX ) ) THEN
ITER = ITER + 1
GO TO 50
END IF
*
* ITERATION COMPLETE. FINAL STAGE.
*
100 CONTINUE
DO 110 I = IOFFVX, IOFFVX+NP-1
K = INDXL2G( I-IOFFVX+IIVX, DESCX( MB_ ), MYROW,
$ DESCX( RSRC_ ), NPROW )-IX+1
IF( MOD( K, 2 ).EQ.0 ) THEN
ALTSGN = -ONE
ELSE
ALTSGN = ONE
END IF
X( I ) = DCMPLX( ALTSGN*( ONE+DBLE( K-1 ) / DBLE( N-1 ) ) )
110 CONTINUE
KASE = 1
JUMP = 5
RETURN
*
* ................ ENTRY (JUMP = 5)
* X HAS BEEN OVERWRITTEN BY A*X
*
120 CONTINUE
CALL PDZSUM1( N, TEMP, X, IX, JX, DESCX, 1 )
IF( DESCX( M_ ).EQ.1 .AND. N.EQ.1 ) THEN
IF( MYROW.EQ.IVXROW ) THEN
CALL DGEBS2D( ICTXT, 'Columnwise', ' ', 1, 1, TEMP, 1 )
ELSE
CALL DGEBR2D( ICTXT, 'Columnwise', ' ', 1, 1, TEMP, 1,
$ IVXROW, MYCOL )
END IF
END IF
TEMP = TWO*( TEMP / DBLE( 3*N ) )
IF( TEMP.GT.EST ) THEN
CALL ZCOPY( NP, X( IOFFVX ), 1, V( IOFFVX ), 1 )
EST = TEMP
END IF
*
130 CONTINUE
KASE = 0
*
RETURN
*
* End of PZLACON
*
END
|