File: pzlacon.f

package info (click to toggle)
scalapack 1.7.4-2
  • links: PTS
  • area: main
  • in suites: etch, etch-m68k
  • size: 34,004 kB
  • ctags: 30,444
  • sloc: fortran: 310,201; ansic: 64,027; makefile: 1,838; sh: 4
file content (384 lines) | stat: -rw-r--r-- 13,561 bytes parent folder | download | duplicates (12)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
      SUBROUTINE PZLACON( N, V, IV, JV, DESCV, X, IX, JX, DESCX, EST,
     $                    KASE )
*
*  -- ScaLAPACK auxiliary routine (version 1.7) --
*     University of Tennessee, Knoxville, Oak Ridge National Laboratory,
*     and University of California, Berkeley.
*     May 1, 1997
*
*     .. Scalar Arguments ..
      INTEGER            IV, IX, JV, JX, KASE, N
      DOUBLE PRECISION   EST
*     ..
*     .. Array Arguments ..
      INTEGER            DESCV( * ), DESCX( * )
      COMPLEX*16         V( * ), X( * )
*     ..
*
*  Purpose
*  =======
*
*  PZLACON estimates the 1-norm of a square, complex distributed matrix
*  A. Reverse communication is used for evaluating matrix-vector
*  products. X and V are aligned with the distributed matrix A, this
*  information is implicitly contained within IV, IX, DESCV, and DESCX.
*
*  Notes
*  =====
*
*  Each global data object is described by an associated description
*  vector.  This vector stores the information required to establish
*  the mapping between an object element and its corresponding process
*  and memory location.
*
*  Let A be a generic term for any 2D block cyclicly distributed array.
*  Such a global array has an associated description vector DESCA.
*  In the following comments, the character _ should be read as
*  "of the global array".
*
*  NOTATION        STORED IN      EXPLANATION
*  --------------- -------------- --------------------------------------
*  DTYPE_A(global) DESCA( DTYPE_ )The descriptor type.  In this case,
*                                 DTYPE_A = 1.
*  CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
*                                 the BLACS process grid A is distribu-
*                                 ted over. The context itself is glo-
*                                 bal, but the handle (the integer
*                                 value) may vary.
*  M_A    (global) DESCA( M_ )    The number of rows in the global
*                                 array A.
*  N_A    (global) DESCA( N_ )    The number of columns in the global
*                                 array A.
*  MB_A   (global) DESCA( MB_ )   The blocking factor used to distribute
*                                 the rows of the array.
*  NB_A   (global) DESCA( NB_ )   The blocking factor used to distribute
*                                 the columns of the array.
*  RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
*                                 row of the array A is distributed.
*  CSRC_A (global) DESCA( CSRC_ ) The process column over which the
*                                 first column of the array A is
*                                 distributed.
*  LLD_A  (local)  DESCA( LLD_ )  The leading dimension of the local
*                                 array.  LLD_A >= MAX(1,LOCr(M_A)).
*
*  Let K be the number of rows or columns of a distributed matrix,
*  and assume that its process grid has dimension p x q.
*  LOCr( K ) denotes the number of elements of K that a process
*  would receive if K were distributed over the p processes of its
*  process column.
*  Similarly, LOCc( K ) denotes the number of elements of K that a
*  process would receive if K were distributed over the q processes of
*  its process row.
*  The values of LOCr() and LOCc() may be determined via a call to the
*  ScaLAPACK tool function, NUMROC:
*          LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
*          LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).
*  An upper bound for these quantities may be computed by:
*          LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
*          LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A
*
*  Arguments
*  =========
*
*  N       (global input) INTEGER
*          The length of the distributed vectors V and X.  N >= 0.
*
*  V       (local workspace) COMPLEX*16 pointer into the local
*          memory to an array of dimension LOCr(N+MOD(IV-1,MB_V)). On
*          the final return, V = A*W, where EST = norm(V)/norm(W)
*          (W is not returned).
*
*  IV      (global input) INTEGER
*          The row index in the global array V indicating the first
*          row of sub( V ).
*
*  JV      (global input) INTEGER
*          The column index in the global array V indicating the
*          first column of sub( V ).
*
*  DESCV   (global and local input) INTEGER array of dimension DLEN_.
*          The array descriptor for the distributed matrix V.
*
*  X       (local input/local output) COMPLEX*16 pointer into the
*          local memory to an array of dimension
*          LOCr(N+MOD(IX-1,MB_X)). On an intermediate return, X
*          should be overwritten by
*                A * X,   if KASE=1,
*                A' * X,  if KASE=2,
*          where A' is the conjugate transpose of A, and PZLACON must
*          be re-called with all the other parameters unchanged.
*
*  IX      (global input) INTEGER
*          The row index in the global array X indicating the first
*          row of sub( X ).
*
*  JX      (global input) INTEGER
*          The column index in the global array X indicating the
*          first column of sub( X ).
*
*  DESCX   (global and local input) INTEGER array of dimension DLEN_.
*          The array descriptor for the distributed matrix X.
*
*
*  EST     (global output) DOUBLE PRECISION
*          An estimate (a lower bound) for norm(A).
*
*  KASE    (local input/local output) INTEGER
*          On the initial call to PZLACON, KASE should be 0.
*          On an intermediate return, KASE will be 1 or 2, indicating
*          whether X should be overwritten by A * X  or A' * X.
*          On the final return from PZLACON, KASE will again be 0.
*
*  Further Details
*  ===============
*
*  The serial version ZLACON has been contributed by Nick Higham,
*  University of Manchester. It was originally named SONEST, dated
*  March 16, 1988.
*
*  Reference: N.J. Higham, "FORTRAN codes for estimating the one-norm of
*  a real or complex matrix, with applications to condition estimation",
*  ACM Trans. Math. Soft., vol. 14, no. 4, pp. 381-396, December 1988.
*
*  =====================================================================
*
*     .. Parameters ..
      INTEGER            BLOCK_CYCLIC_2D, CSRC_, CTXT_, DLEN_, DTYPE_,
     $                   LLD_, MB_, M_, NB_, N_, RSRC_
      PARAMETER          ( BLOCK_CYCLIC_2D = 1, DLEN_ = 9, DTYPE_ = 1,
     $                     CTXT_ = 2, M_ = 3, N_ = 4, MB_ = 5, NB_ = 6,
     $                     RSRC_ = 7, CSRC_ = 8, LLD_ = 9 )
      INTEGER            ITMAX
      PARAMETER          ( ITMAX = 5 )
      DOUBLE PRECISION   ONE, TWO
      PARAMETER          ( ONE = 1.0D+0, TWO = 2.0D+0 )
      COMPLEX*16         CZERO, CONE
      PARAMETER          ( CZERO = ( 0.0D+0, 0.0D+0 ),
     $                   CONE = ( 1.0D+0, 0.0D+0 ) )
*     ..
*     .. Local Scalars ..
      INTEGER            I, ICTXT, IIVX, IMAXROW, IOFFVX, IROFF, ITER,
     $                   IVXCOL, IVXROW, J, JLAST, JJVX, JUMP, K,
     $                   MYCOL, MYROW, NP, NPCOL, NPROW
      DOUBLE PRECISION   ALTSGN, ESTOLD, SAFMIN, TEMP
      COMPLEX*16         JLMAX, XMAX
*     ..
*     .. Local Arrays ..
      COMPLEX*16         WORK( 2 )
*     ..
*     .. External Subroutines ..
      EXTERNAL           BLACS_GRIDINFO, INFOG2L, DGEBR2D,
     $                   DGEBS2D, PDZSUM1, PZELGET,
     $                   PZMAX1, ZCOPY, ZGEBR2D, ZGEBS2D
*     ..
*     .. External Functions ..
      INTEGER            INDXG2L, INDXG2P, INDXL2G, NUMROC
      DOUBLE PRECISION   PDLAMCH
      EXTERNAL           INDXG2L, INDXG2P, INDXL2G, NUMROC, PDLAMCH
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, DBLE, DCMPLX
*     ..
*     .. Save statement ..
      SAVE
*     ..
*     .. Executable Statements ..
*
*     Get grid parameters.
*
      ICTXT = DESCX( CTXT_ )
      CALL BLACS_GRIDINFO( ICTXT, NPROW, NPCOL, MYROW, MYCOL )
*
      CALL INFOG2L( IX, JX, DESCX, NPROW, NPCOL, MYROW, MYCOL,
     $              IIVX, JJVX, IVXROW, IVXCOL )
      IF( MYCOL.NE.IVXCOL )
     $   RETURN
      IROFF = MOD( IX-1, DESCX( MB_ ) )
      NP = NUMROC( N+IROFF, DESCX( MB_ ), MYROW, IVXROW, NPROW )
      IF( MYROW.EQ.IVXROW )
     $   NP = NP - IROFF
      IOFFVX = IIVX + (JJVX-1)*DESCX( LLD_ )
*
      SAFMIN = PDLAMCH( ICTXT, 'Safe minimum' )
      IF( KASE.EQ.0 ) THEN
         DO 10 I = IOFFVX, IOFFVX+NP-1
            X( I ) = DCMPLX( ONE / DBLE( N ) )
   10    CONTINUE
         KASE = 1
         JUMP = 1
         RETURN
      END IF
*
      GO TO ( 20, 40, 70, 90, 120 )JUMP
*
*     ................ ENTRY   (JUMP = 1)
*     FIRST ITERATION.  X HAS BEEN OVERWRITTEN BY A*X
*
   20 CONTINUE
      IF( N.EQ.1 ) THEN
         IF( MYROW.EQ.IVXROW ) THEN
            V( IOFFVX ) = X( IOFFVX )
            EST = ABS( V( IOFFVX ) )
            CALL DGEBS2D( ICTXT, 'Columnwise', ' ', 1, 1, EST, 1 )
         ELSE
            CALL DGEBR2D( ICTXT, 'Columnwise', ' ', 1, 1, EST, 1,
     $                    IVXROW, MYCOL )
         END IF
*        ... QUIT
         GO TO 130
      END IF
      CALL PDZSUM1( N, EST, X, IX, JX, DESCX, 1 )
      IF( DESCX( M_ ).EQ.1 .AND. N.EQ.1 ) THEN
         IF( MYROW.EQ.IVXROW ) THEN
            CALL DGEBS2D( ICTXT, 'Columnwise', ' ', 1, 1, EST, 1 )
         ELSE
            CALL DGEBR2D( ICTXT, 'Columnwise', ' ', 1, 1, EST, 1,
     $                    IVXROW, MYCOL )
         END IF
      END IF
*
      DO 30 I = IOFFVX, IOFFVX+NP-1
         IF( ABS( X( I ) ).GT.SAFMIN ) THEN
            X( I ) = X( I ) / DCMPLX( ABS( X( I ) ) )
         ELSE
            X( I ) = CONE
         END IF
   30 CONTINUE
      KASE = 2
      JUMP = 2
      RETURN
*
*     ................ ENTRY   (JUMP = 2)
*     FIRST ITERATION.  X HAS BEEN OVERWRITTEN BY CTRANS(A)*X
*
   40 CONTINUE
      CALL PZMAX1( N, XMAX, J, X, IX, JX, DESCX, 1 )
      IF( DESCX( M_ ).EQ.1 .AND. N.EQ.1 ) THEN
         IF( MYROW.EQ.IVXROW ) THEN
            WORK( 1 ) = XMAX
            WORK( 2 ) = DCMPLX( DBLE( J ) )
            CALL ZGEBS2D( ICTXT, 'Columnwise', ' ', 2, 1, WORK, 2 )
         ELSE
            CALL ZGEBR2D( ICTXT, 'Columnwise', ' ', 2, 1, WORK, 2,
     $                    IVXROW, MYCOL )
            XMAX = WORK( 1 )
            J = NINT( DBLE( WORK( 2 ) ) )
         END IF
      END IF
      ITER = 2
*
*     MAIN LOOP - ITERATIONS 2, 3,...,ITMAX
*
   50 CONTINUE
      DO 60 I = IOFFVX, IOFFVX+NP-1
         X( I ) = CZERO
   60 CONTINUE
      IMAXROW = INDXG2P( J, DESCX( MB_ ), MYROW, DESCX( RSRC_ ), NPROW )
      IF( MYROW.EQ.IMAXROW ) THEN
         I = INDXG2L( J, DESCX( MB_ ), MYROW, DESCX( RSRC_ ), NPROW )
         X( I ) = CONE
      END IF
      KASE = 1
      JUMP = 3
      RETURN
*
*     ................ ENTRY   (JUMP = 3)
*     X HAS BEEN OVERWRITTEN BY A*X
*
   70 CONTINUE
      CALL ZCOPY( NP, X( IOFFVX ), 1, V( IOFFVX ), 1 )
      ESTOLD = EST
      CALL PDZSUM1( N, EST, V, IV, JV, DESCV, 1 )
      IF( DESCV( M_ ).EQ.1 .AND. N.EQ.1 ) THEN
         IF( MYROW.EQ.IVXROW ) THEN
            CALL DGEBS2D( ICTXT, 'Columnwise', ' ', 1, 1, EST, 1 )
         ELSE
            CALL DGEBR2D( ICTXT, 'Columnwise', ' ', 1, 1, EST, 1,
     $                    IVXROW, MYCOL )
         END IF
      END IF
*
*     TEST FOR CYCLING
      IF( EST.LE.ESTOLD )
     $   GO TO 100
*
      DO 80 I = IOFFVX, IOFFVX+NP-1
         IF( ABS( X( I ) ).GT.SAFMIN ) THEN
            X( I ) = X( I ) / DCMPLX( ABS( X( I ) ) )
         ELSE
            X( I ) = CONE
         END IF
   80 CONTINUE
      KASE = 2
      JUMP = 4
      RETURN
*
*     ................ ENTRY   (JUMP = 4)
*     X HAS BEEN OVERWRITTEN BY CTRANS(A)*X
*
   90 CONTINUE
      JLAST = J
      CALL PZMAX1( N, XMAX, J, X, IX, JX, DESCX, 1 )
      IF( DESCX( M_ ).EQ.1 .AND. N.EQ.1 ) THEN
         IF( MYROW.EQ.IVXROW ) THEN
            WORK( 1 ) = XMAX
            WORK( 2 ) = DCMPLX( DBLE( J ) )
            CALL ZGEBS2D( ICTXT, 'Columnwise', ' ', 2, 1, WORK, 2 )
         ELSE
            CALL ZGEBR2D( ICTXT, 'Columnwise', ' ', 2, 1, WORK, 2,
     $                    IVXROW, MYCOL )
            XMAX = WORK( 1 )
            J = NINT( DBLE( WORK( 2 ) ) )
         END IF
      END IF
      CALL PZELGET( 'Columnwise', ' ', JLMAX, X, JLAST, JX, DESCX )
      IF( ( DBLE( JLMAX ).NE.ABS( DBLE( XMAX ) ) ).AND.
     $    ( ITER.LT.ITMAX                        ) ) THEN
         ITER = ITER + 1
         GO TO 50
      END IF
*
*     ITERATION COMPLETE.  FINAL STAGE.
*
  100 CONTINUE
      DO 110 I = IOFFVX, IOFFVX+NP-1
         K = INDXL2G( I-IOFFVX+IIVX, DESCX( MB_ ), MYROW,
     $                DESCX( RSRC_ ), NPROW )-IX+1
         IF( MOD( K, 2 ).EQ.0 ) THEN
            ALTSGN = -ONE
         ELSE
            ALTSGN = ONE
         END IF
         X( I ) = DCMPLX( ALTSGN*( ONE+DBLE( K-1 ) / DBLE( N-1 ) ) )
  110 CONTINUE
      KASE = 1
      JUMP = 5
      RETURN
*
*     ................ ENTRY   (JUMP = 5)
*     X HAS BEEN OVERWRITTEN BY A*X
*
  120 CONTINUE
      CALL PDZSUM1( N, TEMP, X, IX, JX, DESCX, 1 )
      IF( DESCX( M_ ).EQ.1 .AND. N.EQ.1 ) THEN
         IF( MYROW.EQ.IVXROW ) THEN
            CALL DGEBS2D( ICTXT, 'Columnwise', ' ', 1, 1, TEMP, 1 )
         ELSE
            CALL DGEBR2D( ICTXT, 'Columnwise', ' ', 1, 1, TEMP, 1,
     $                    IVXROW, MYCOL )
         END IF
      END IF
      TEMP = TWO*( TEMP / DBLE( 3*N ) )
      IF( TEMP.GT.EST ) THEN
         CALL ZCOPY( NP, X( IOFFVX ), 1, V( IOFFVX ), 1 )
         EST = TEMP
      END IF
*
  130 CONTINUE
      KASE = 0
*
      RETURN
*
*     End of PZLACON
*
      END