File: pzlange.f

package info (click to toggle)
scalapack 1.7.4-2
  • links: PTS
  • area: main
  • in suites: etch, etch-m68k
  • size: 34,004 kB
  • ctags: 30,444
  • sloc: fortran: 310,201; ansic: 64,027; makefile: 1,838; sh: 4
file content (324 lines) | stat: -rw-r--r-- 11,702 bytes parent folder | download | duplicates (9)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
      DOUBLE PRECISION   FUNCTION PZLANGE( NORM, M, N, A, IA, JA, DESCA,
     $                                     WORK )
*
*  -- ScaLAPACK auxiliary routine (version 1.7) --
*     University of Tennessee, Knoxville, Oak Ridge National Laboratory,
*     and University of California, Berkeley.
*     May 1, 1997
*
*     .. Scalar Arguments ..
      CHARACTER          NORM
      INTEGER            IA, JA, M, N
*     ..
*     .. Array Arguments ..
      INTEGER            DESCA( * )
      DOUBLE PRECISION   WORK( * )
      COMPLEX*16         A( * )
*     ..
*
*  Purpose
*  =======
*
*  PZLANGE returns the value of the one norm, or the Frobenius norm,
*  or the infinity norm, or the element of largest absolute value of a
*  distributed matrix sub( A ) = A(IA:IA+M-1, JA:JA+N-1).
*
*  PZLANGE returns the value
*
*     ( max(abs(A(i,j))),  NORM = 'M' or 'm' with IA <= i <= IA+M-1,
*     (                                      and  JA <= j <= JA+N-1,
*     (
*     ( norm1( sub( A ) ), NORM = '1', 'O' or 'o'
*     (
*     ( normI( sub( A ) ), NORM = 'I' or 'i'
*     (
*     ( normF( sub( A ) ), NORM = 'F', 'f', 'E' or 'e'
*
*  where norm1 denotes the  one norm of a matrix (maximum column sum),
*  normI denotes the  infinity norm  of a matrix  (maximum row sum) and
*  normF denotes the  Frobenius norm of a matrix (square root of sum of
*  squares).  Note that  max(abs(A(i,j)))  is not a  matrix norm.
*
*  Notes
*  =====
*
*  Each global data object is described by an associated description
*  vector.  This vector stores the information required to establish
*  the mapping between an object element and its corresponding process
*  and memory location.
*
*  Let A be a generic term for any 2D block cyclicly distributed array.
*  Such a global array has an associated description vector DESCA.
*  In the following comments, the character _ should be read as
*  "of the global array".
*
*  NOTATION        STORED IN      EXPLANATION
*  --------------- -------------- --------------------------------------
*  DTYPE_A(global) DESCA( DTYPE_ )The descriptor type.  In this case,
*                                 DTYPE_A = 1.
*  CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
*                                 the BLACS process grid A is distribu-
*                                 ted over. The context itself is glo-
*                                 bal, but the handle (the integer
*                                 value) may vary.
*  M_A    (global) DESCA( M_ )    The number of rows in the global
*                                 array A.
*  N_A    (global) DESCA( N_ )    The number of columns in the global
*                                 array A.
*  MB_A   (global) DESCA( MB_ )   The blocking factor used to distribute
*                                 the rows of the array.
*  NB_A   (global) DESCA( NB_ )   The blocking factor used to distribute
*                                 the columns of the array.
*  RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
*                                 row of the array A is distributed.
*  CSRC_A (global) DESCA( CSRC_ ) The process column over which the
*                                 first column of the array A is
*                                 distributed.
*  LLD_A  (local)  DESCA( LLD_ )  The leading dimension of the local
*                                 array.  LLD_A >= MAX(1,LOCr(M_A)).
*
*  Let K be the number of rows or columns of a distributed matrix,
*  and assume that its process grid has dimension p x q.
*  LOCr( K ) denotes the number of elements of K that a process
*  would receive if K were distributed over the p processes of its
*  process column.
*  Similarly, LOCc( K ) denotes the number of elements of K that a
*  process would receive if K were distributed over the q processes of
*  its process row.
*  The values of LOCr() and LOCc() may be determined via a call to the
*  ScaLAPACK tool function, NUMROC:
*          LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
*          LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).
*  An upper bound for these quantities may be computed by:
*          LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
*          LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A
*
*  Arguments
*  =========
*
*  NORM    (global input) CHARACTER
*          Specifies the value to be returned in PZLANGE as described
*          above.
*
*  M       (global input) INTEGER
*          The number of rows to be operated on i.e the number of rows
*          of the distributed submatrix sub( A ). When M = 0, PZLANGE
*          is set to zero. M >= 0.
*
*  N       (global input) INTEGER
*          The number of columns to be operated on i.e the number of
*          columns of the distributed submatrix sub( A ). When N = 0,
*          PZLANGE is set to zero. N >= 0.
*
*  A       (local input) COMPLEX*16 pointer into the local memory
*          to an array of dimension (LLD_A, LOCc(JA+N-1)) containing the
*          local pieces of the distributed matrix sub( A ).
*
*  IA      (global input) INTEGER
*          The row index in the global array A indicating the first
*          row of sub( A ).
*
*  JA      (global input) INTEGER
*          The column index in the global array A indicating the
*          first column of sub( A ).
*
*  DESCA   (global and local input) INTEGER array of dimension DLEN_.
*          The array descriptor for the distributed matrix A.
*
*  WORK    (local workspace) DOUBLE PRECISION array dimension (LWORK)
*          LWORK >=   0 if NORM = 'M' or 'm' (not referenced),
*                   Nq0 if NORM = '1', 'O' or 'o',
*                   Mp0 if NORM = 'I' or 'i',
*                     0 if NORM = 'F', 'f', 'E' or 'e' (not referenced),
*          where
*
*          IROFFA = MOD( IA-1, MB_A ), ICOFFA = MOD( JA-1, NB_A ),
*          IAROW = INDXG2P( IA, MB_A, MYROW, RSRC_A, NPROW ),
*          IACOL = INDXG2P( JA, NB_A, MYCOL, CSRC_A, NPCOL ),
*          Mp0 = NUMROC( M+IROFFA, MB_A, MYROW, IAROW, NPROW ),
*          Nq0 = NUMROC( N+ICOFFA, NB_A, MYCOL, IACOL, NPCOL ),
*
*          INDXG2P and NUMROC are ScaLAPACK tool functions; MYROW,
*          MYCOL, NPROW and NPCOL can be determined by calling the
*          subroutine BLACS_GRIDINFO.
*
*  =====================================================================
*
*     .. Parameters ..
      INTEGER            BLOCK_CYCLIC_2D, CSRC_, CTXT_, DLEN_, DTYPE_,
     $                   LLD_, MB_, M_, NB_, N_, RSRC_
      PARAMETER          ( BLOCK_CYCLIC_2D = 1, DLEN_ = 9, DTYPE_ = 1,
     $                     CTXT_ = 2, M_ = 3, N_ = 4, MB_ = 5, NB_ = 6,
     $                     RSRC_ = 7, CSRC_ = 8, LLD_ = 9 )
      DOUBLE PRECISION   ONE, ZERO
      PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
*     ..
*     .. Local Scalars ..
      INTEGER            I, IACOL, IAROW, ICTXT, II, ICOFF, IOFFA,
     $                   IROFF, J, JJ, LDA, MP, MYCOL, MYROW, NPCOL,
     $                   NPROW, NQ
      DOUBLE PRECISION   SCALE, SUM, VALUE
*     ..
*     .. Local Arrays ..
      DOUBLE PRECISION   RWORK( 2 )
*     ..
*     .. External Subroutines ..
      EXTERNAL           BLACS_GRIDINFO, DCOMBSSQ, DGEBR2D,
     $                   DGEBS2D, DGAMX2D, DGSUM2D, INFOG2L,
     $                   PDTREECOMB, ZLASSQ
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      INTEGER            IDAMAX, NUMROC
      EXTERNAL           LSAME, IDAMAX, NUMROC
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, MAX, MIN, MOD, SQRT
*     ..
*     .. Executable Statements ..
*
*     Get grid parameters.
*
      ICTXT = DESCA( CTXT_ )
      CALL BLACS_GRIDINFO( ICTXT, NPROW, NPCOL, MYROW, MYCOL )
*
      CALL INFOG2L( IA, JA, DESCA, NPROW, NPCOL, MYROW, MYCOL, II, JJ,
     $              IAROW, IACOL )
      IROFF = MOD( IA-1, DESCA( MB_ ) )
      ICOFF = MOD( JA-1, DESCA( NB_ ) )
      MP = NUMROC( M+IROFF, DESCA( MB_ ), MYROW, IAROW, NPROW )
      NQ = NUMROC( N+ICOFF, DESCA( NB_ ), MYCOL, IACOL, NPCOL )
      IF( MYROW.EQ.IAROW )
     $   MP = MP - IROFF
      IF( MYCOL.EQ.IACOL )
     $   NQ = NQ - ICOFF
      LDA = DESCA( LLD_ )
*
      IF( MIN( M, N ).EQ.0 ) THEN
*
         VALUE = ZERO
*
      ELSE IF( LSAME( NORM, 'M' ) ) THEN
*
*        Find max(abs(A(i,j))).
*
         VALUE = ZERO
         IF( NQ.GT.0 .AND. MP.GT.0 ) THEN
            IOFFA = (JJ-1)*LDA
            DO 20 J = JJ, JJ+NQ-1
               DO 10 I = II, MP+II-1
                  VALUE = MAX( VALUE, ABS( A( IOFFA+I ) ) )
   10          CONTINUE
               IOFFA = IOFFA + LDA
   20       CONTINUE
         END IF
         CALL DGAMX2D( ICTXT, 'All', ' ', 1, 1, VALUE, 1, I, J, -1,
     $                 0, 0 )
*
      ELSE IF( LSAME( NORM, 'O' ) .OR. NORM.EQ.'1' ) THEN
*
*        Find norm1( sub( A ) ).
*
         IF( NQ.GT.0 ) THEN
            IOFFA = ( JJ - 1 ) * LDA
            DO 40 J = JJ, JJ+NQ-1
               SUM = ZERO
               IF( MP.GT.0 ) THEN
                  DO 30 I = II, MP+II-1
                     SUM = SUM + ABS( A( IOFFA+I ) )
   30             CONTINUE
               END IF
               IOFFA = IOFFA + LDA
               WORK( J-JJ+1 ) = SUM
   40       CONTINUE
         END IF
*
*        Find sum of global matrix columns and store on row 0 of
*        process grid
*
         CALL DGSUM2D( ICTXT, 'Columnwise', ' ', 1, NQ, WORK, 1,
     $                 0, MYCOL )
*
*        Find maximum sum of columns for 1-norm
*
         IF( MYROW.EQ.0 ) THEN
            IF( NQ.GT.0 ) THEN
               VALUE = WORK( IDAMAX( NQ, WORK, 1 ) )
            ELSE
               VALUE = ZERO
            END IF
            CALL DGAMX2D( ICTXT, 'Rowwise', ' ', 1, 1, VALUE, 1, I, J,
     $                    -1, 0, 0 )
         END IF
*
      ELSE IF( LSAME( NORM, 'I' ) ) THEN
*
*        Find normI( sub( A ) ).
*
         IF( MP.GT.0 ) THEN
            IOFFA = II + ( JJ - 1 ) * LDA
            DO 60 I = II, II+MP-1
               SUM = ZERO
               IF( NQ.GT.0 ) THEN
                  DO 50 J = IOFFA, IOFFA + NQ*LDA - 1, LDA
                     SUM = SUM + ABS( A( J ) )
   50             CONTINUE
               END IF
               WORK( I-II+1 ) = SUM
               IOFFA = IOFFA + 1
   60       CONTINUE
         END IF
*
*        Find sum of global matrix rows and store on column 0 of
*        process grid
*
         CALL DGSUM2D( ICTXT, 'Rowwise', ' ', MP, 1, WORK, MAX( 1, MP ),
     $                 MYROW, 0 )
*
*        Find maximum sum of rows for supnorm
*
         IF( MYCOL.EQ.0 ) THEN
            IF( MP.GT.0 ) THEN
               VALUE = WORK( IDAMAX( MP, WORK, 1 ) )
            ELSE
               VALUE = ZERO
            END IF
            CALL DGAMX2D( ICTXT, 'Columnwise', ' ', 1, 1, VALUE, 1, I,
     $                    J, -1, 0, 0 )
         END IF
*
      ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN
*
*        Find normF( sub( A ) ).
*
         SCALE = ZERO
         SUM = ONE
         IOFFA = II + ( JJ - 1 ) * LDA
         IF( NQ.GT.0 ) THEN
             DO 70 J = IOFFA, IOFFA + NQ*LDA - 1, LDA
                CALL ZLASSQ( MP, A( J ), 1, SCALE, SUM )
   70        CONTINUE
         END IF
*
*        Perform the global scaled sum
*
         RWORK( 1 ) = SCALE
         RWORK( 2 ) = SUM
         CALL PDTREECOMB( ICTXT, 'All', 2, RWORK, 0, 0, DCOMBSSQ )
         VALUE = RWORK( 1 ) * SQRT( RWORK( 2 ) )
*
      END IF
*
      IF( MYROW.EQ.0 .AND. MYCOL.EQ.0 ) THEN
         CALL DGEBS2D( ICTXT, 'All', ' ', 1, 1, VALUE, 1 )
      ELSE
         CALL DGEBR2D( ICTXT, 'All', ' ', 1, 1, VALUE, 1, 0, 0 )
      END IF
*
      PZLANGE = VALUE
*
      RETURN
*
*     End of PZLANGE
*
      END