1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
|
SUBROUTINE PZLASMSUB( A, DESCA, I, L, K, SMLNUM, BUF, LWORK )
*
* -- ScaLAPACK routine (version 1.7) --
* University of Tennessee, Knoxville, Oak Ridge National Laboratory,
* and University of California, Berkeley.
* July 31, 2001
*
* .. Scalar Arguments ..
INTEGER I, K, L, LWORK
DOUBLE PRECISION SMLNUM
* ..
* .. Array Arguments ..
INTEGER DESCA( * )
COMPLEX*16 A( * ), BUF( * )
* ..
*
* Purpose
* =======
*
* PZLASMSUB looks for a small subdiagonal element from the bottom
* of the matrix that it can safely set to zero.
*
* Notes
* =====
*
* Each global data object is described by an associated description
* vector. This vector stores the information required to establish
* the mapping between an object element and its corresponding process
* and memory location.
*
* Let A be a generic term for any 2D block cyclicly distributed array.
* Such a global array has an associated description vector DESCA.
* In the following comments, the character _ should be read as
* "of the global array".
*
* NOTATION STORED IN EXPLANATION
* --------------- -------------- --------------------------------------
* DTYPE_A(global) DESCA( DTYPE_ )The descriptor type. In this case,
* DTYPE_A = 1.
* CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
* the BLACS process grid A is distribu-
* ted over. The context itself is glo-
* bal, but the handle (the integer
* value) may vary.
* M_A (global) DESCA( M_ ) The number of rows in the global
* array A.
* N_A (global) DESCA( N_ ) The number of columns in the global
* array A.
* MB_A (global) DESCA( MB_ ) The blocking factor used to distribute
* the rows of the array.
* NB_A (global) DESCA( NB_ ) The blocking factor used to distribute
* the columns of the array.
* RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
* row of the array A is distributed.
* CSRC_A (global) DESCA( CSRC_ ) The process column over which the
* first column of the array A is
* distributed.
* LLD_A (local) DESCA( LLD_ ) The leading dimension of the local
* array. LLD_A >= MAX(1,LOCr(M_A)).
*
* Let K be the number of rows or columns of a distributed matrix,
* and assume that its process grid has dimension p x q.
* LOCr( K ) denotes the number of elements of K that a process
* would receive if K were distributed over the p processes of its
* process column.
* Similarly, LOCc( K ) denotes the number of elements of K that a
* process would receive if K were distributed over the q processes of
* its process row.
* The values of LOCr() and LOCc() may be determined via a call to the
* ScaLAPACK tool function, NUMROC:
* LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
* LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).
* An upper bound for these quantities may be computed by:
* LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
* LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A
*
* Arguments
* =========
*
* A (global input) COMPLEX*16 array, dimension (DESCA(LLD_),*)
* On entry, the Hessenberg matrix whose tridiagonal part is
* being scanned.
* Unchanged on exit.
*
* DESCA (global and local input) INTEGER array of dimension DLEN_.
* The array descriptor for the distributed matrix A.
*
* I (global input) INTEGER
* The global location of the bottom of the unreduced
* submatrix of A.
* Unchanged on exit.
*
* L (global input) INTEGER
* The global location of the top of the unreduced submatrix
* of A.
* Unchanged on exit.
*
* K (global output) INTEGER
* On exit, this yields the bottom portion of the unreduced
* submatrix. This will satisfy: L <= M <= I-1.
*
* SMLNUM (global input) DOUBLE PRECISION
* On entry, a "small number" for the given matrix.
* Unchanged on exit.
*
* BUF (local output) COMPLEX*16 array of size LWORK.
*
* LWORK (global input) INTEGER
* On exit, LWORK is the size of the work buffer.
* This must be at least 2*Ceil( Ceil( (I-L)/HBL ) /
* LCM(NPROW,NPCOL) )
* Here LCM is least common multiple, and NPROWxNPCOL is the
* logical grid size.
*
* Notes:
*
* This routine does a global maximum and must be called by all
* processes.
*
* This code is basically a parallelization of the following snip
* of LAPACK code from ZLAHQR:
*
* Look for a single small subdiagonal element.
*
* DO 20 K = I, L + 1, -1
* TST1 = CABS1( H( K-1, K-1 ) ) + CABS1( H( K, K ) )
* IF( TST1.EQ.ZERO )
* $ TST1 = ZLANHS( '1', I-L+1, H( L, L ), LDH, WORK )
* IF( CABS1( H( K, K-1 ) ).LE.MAX( ULP*TST1, SMLNUM ) )
* $ GO TO 30
* 20 CONTINUE
* 30 CONTINUE
*
* Further Details
* ===============
*
* Implemented by: M. Fahey, May 28, 1999
*
* =====================================================================
*
* .. Parameters ..
INTEGER BLOCK_CYCLIC_2D, CSRC_, CTXT_, DLEN_, DTYPE_,
$ LLD_, MB_, M_, NB_, N_, RSRC_
PARAMETER ( BLOCK_CYCLIC_2D = 1, DLEN_ = 9, DTYPE_ = 1,
$ CTXT_ = 2, M_ = 3, N_ = 4, MB_ = 5, NB_ = 6,
$ RSRC_ = 7, CSRC_ = 8, LLD_ = 9 )
DOUBLE PRECISION ZERO
PARAMETER ( ZERO = 0.0D+0 )
* ..
* .. Local Scalars ..
INTEGER CONTXT, DOWN, HBL, IBUF1, IBUF2, ICOL1, ICOL2,
$ II, III, IRCV1, IRCV2, IROW1, IROW2, ISRC,
$ ISTR1, ISTR2, ITMP1, ITMP2, JJ, JJJ, JSRC, LDA,
$ LEFT, MODKM1, MYCOL, MYROW, NPCOL, NPROW, NUM,
$ RIGHT, UP
DOUBLE PRECISION TST1, ULP
COMPLEX*16 CDUM, H10, H11, H22
* ..
* .. External Functions ..
INTEGER ILCM, NUMROC
DOUBLE PRECISION PDLAMCH
EXTERNAL ILCM, NUMROC, PDLAMCH
* ..
* .. External Subroutines ..
EXTERNAL BLACS_GRIDINFO, IGAMX2D, INFOG1L, INFOG2L,
$ ZGERV2D, ZGESD2D
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, DBLE, DIMAG, MAX, MOD
* ..
* .. Statement Functions ..
DOUBLE PRECISION CABS1
* ..
* .. Statement Function definitions ..
CABS1( CDUM ) = ABS( DBLE( CDUM ) ) + ABS( DIMAG( CDUM ) )
* ..
* .. Executable Statements ..
*
HBL = DESCA( MB_ )
CONTXT = DESCA( CTXT_ )
LDA = DESCA( LLD_ )
ULP = PDLAMCH( CONTXT, 'PRECISION' )
CALL BLACS_GRIDINFO( CONTXT, NPROW, NPCOL, MYROW, MYCOL )
LEFT = MOD( MYCOL+NPCOL-1, NPCOL )
RIGHT = MOD( MYCOL+1, NPCOL )
UP = MOD( MYROW+NPROW-1, NPROW )
DOWN = MOD( MYROW+1, NPROW )
NUM = NPROW*NPCOL
*
* BUFFER1 STARTS AT BUF(ISTR1+1) AND WILL CONTAINS IBUF1 ELEMENTS
* BUFFER2 STARTS AT BUF(ISTR2+1) AND WILL CONTAINS IBUF2 ELEMENTS
*
ISTR1 = 0
ISTR2 = ( ( I-L ) / HBL )
IF( ISTR2*HBL.LT.( I-L ) )
$ ISTR2 = ISTR2 + 1
II = ISTR2 / ILCM( NPROW, NPCOL )
IF( II*ILCM( NPROW, NPCOL ).LT.ISTR2 ) THEN
ISTR2 = II + 1
ELSE
ISTR2 = II
END IF
IF( LWORK.LT.2*ISTR2 ) THEN
*
* Error!
*
RETURN
END IF
CALL INFOG2L( I, I, DESCA, NPROW, NPCOL, MYROW, MYCOL, IROW1,
$ ICOL1, II, JJ )
MODKM1 = MOD( I-1+HBL, HBL )
*
* COPY OUR RELEVANT PIECES OF TRIADIAGONAL THAT WE OWE INTO
* 2 BUFFERS TO SEND TO WHOMEVER OWNS H(K,K) AS K MOVES DIAGONALLY
* UP THE TRIDIAGONAL
*
IBUF1 = 0
IBUF2 = 0
IRCV1 = 0
IRCV2 = 0
DO 10 K = I, L + 1, -1
IF( ( MODKM1.EQ.0 ) .AND. ( DOWN.EQ.II ) .AND.
$ ( RIGHT.EQ.JJ ) ) THEN
*
* WE MUST PACK H(K-1,K-1) AND SEND IT DIAGONAL DOWN
*
IF( ( DOWN.NE.MYROW ) .OR. ( RIGHT.NE.MYCOL ) ) THEN
CALL INFOG2L( K-1, K-1, DESCA, NPROW, NPCOL, MYROW,
$ MYCOL, IROW1, ICOL1, ISRC, JSRC )
IBUF1 = IBUF1 + 1
BUF( ISTR1+IBUF1 ) = A( ( ICOL1-1 )*LDA+IROW1 )
END IF
END IF
IF( ( MODKM1.EQ.0 ) .AND. ( MYROW.EQ.II ) .AND.
$ ( RIGHT.EQ.JJ ) ) THEN
*
* WE MUST PACK H(K ,K-1) AND SEND IT RIGHT
*
IF( NPCOL.GT.1 ) THEN
CALL INFOG2L( K, K-1, DESCA, NPROW, NPCOL, MYROW, MYCOL,
$ IROW1, ICOL1, ISRC, JSRC )
IBUF2 = IBUF2 + 1
BUF( ISTR2+IBUF2 ) = A( ( ICOL1-1 )*LDA+IROW1 )
END IF
END IF
*
* ADD UP THE RECEIVES
*
IF( ( MYROW.EQ.II ) .AND. ( MYCOL.EQ.JJ ) ) THEN
IF( ( MODKM1.EQ.0 ) .AND. ( ( NPROW.GT.1 ) .OR. ( NPCOL.GT.
$ 1 ) ) ) THEN
*
* WE MUST RECEIVE H(K-1,K-1) FROM DIAGONAL UP
*
IRCV1 = IRCV1 + 1
END IF
IF( ( MODKM1.EQ.0 ) .AND. ( NPCOL.GT.1 ) ) THEN
*
* WE MUST RECEIVE H(K ,K-1) FROM LEFT
*
IRCV2 = IRCV2 + 1
END IF
END IF
*
* POSSIBLY CHANGE OWNERS (OCCURS ONLY WHEN MOD(K-1,HBL) = 0)
*
IF( MODKM1.EQ.0 ) THEN
II = II - 1
JJ = JJ - 1
IF( II.LT.0 )
$ II = NPROW - 1
IF( JJ.LT.0 )
$ JJ = NPCOL - 1
END IF
MODKM1 = MODKM1 - 1
IF( MODKM1.LT.0 )
$ MODKM1 = HBL - 1
10 CONTINUE
*
* SEND DATA ON TO THE APPROPRIATE NODE IF THERE IS ANY DATA TO SEND
*
IF( IBUF1.GT.0 ) THEN
CALL ZGESD2D( CONTXT, IBUF1, 1, BUF( ISTR1+1 ), IBUF1, DOWN,
$ RIGHT )
END IF
IF( IBUF2.GT.0 ) THEN
CALL ZGESD2D( CONTXT, IBUF2, 1, BUF( ISTR2+1 ), IBUF2, MYROW,
$ RIGHT )
END IF
*
* RECEIVE APPROPRIATE DATA IF THERE IS ANY
*
IF( IRCV1.GT.0 ) THEN
CALL ZGERV2D( CONTXT, IRCV1, 1, BUF( ISTR1+1 ), IRCV1, UP,
$ LEFT )
END IF
IF( IRCV2.GT.0 ) THEN
CALL ZGERV2D( CONTXT, IRCV2, 1, BUF( ISTR2+1 ), IRCV2, MYROW,
$ LEFT )
END IF
*
* START MAIN LOOP
*
IBUF1 = 0
IBUF2 = 0
CALL INFOG2L( I, I, DESCA, NPROW, NPCOL, MYROW, MYCOL, IROW1,
$ ICOL1, II, JJ )
MODKM1 = MOD( I-1+HBL, HBL )
*
* LOOK FOR A SINGLE SMALL SUBDIAGONAL ELEMENT.
*
* Start loop for subdiagonal search
*
DO 40 K = I, L + 1, -1
IF( ( MYROW.EQ.II ) .AND. ( MYCOL.EQ.JJ ) ) THEN
IF( MODKM1.EQ.0 ) THEN
*
* Grab information from WORK array
*
IF( NUM.GT.1 ) THEN
IBUF1 = IBUF1 + 1
H11 = BUF( ISTR1+IBUF1 )
ELSE
H11 = A( ( ICOL1-2 )*LDA+IROW1-1 )
END IF
IF( NPCOL.GT.1 ) THEN
IBUF2 = IBUF2 + 1
H10 = BUF( ISTR2+IBUF2 )
ELSE
H10 = A( ( ICOL1-2 )*LDA+IROW1 )
END IF
ELSE
*
* Information is local
*
H11 = A( ( ICOL1-2 )*LDA+IROW1-1 )
H10 = A( ( ICOL1-2 )*LDA+IROW1 )
END IF
H22 = A( ( ICOL1-1 )*LDA+IROW1 )
TST1 = CABS1( H11 ) + CABS1( H22 )
IF( TST1.EQ.ZERO ) THEN
*
* FIND SOME NORM OF THE LOCAL H(L:I,L:I)
*
CALL INFOG1L( L, HBL, NPROW, MYROW, 0, IROW1, III )
IROW2 = NUMROC( I, HBL, MYROW, 0, NPROW )
CALL INFOG1L( L, HBL, NPCOL, MYCOL, 0, ICOL1, III )
ICOL2 = NUMROC( I, HBL, MYCOL, 0, NPCOL )
DO 30 III = IROW1, IROW2
DO 20 JJJ = ICOL1, ICOL2
TST1 = TST1 + CABS1( A( ( JJJ-1 )*LDA+III ) )
20 CONTINUE
30 CONTINUE
END IF
IF( CABS1( H10 ).LE.MAX( ULP*TST1, SMLNUM ) )
$ GO TO 50
IROW1 = IROW1 - 1
ICOL1 = ICOL1 - 1
END IF
MODKM1 = MODKM1 - 1
IF( MODKM1.LT.0 )
$ MODKM1 = HBL - 1
IF( ( MODKM1.EQ.HBL-1 ) .AND. ( K.GT.2 ) ) THEN
II = MOD( II+NPROW-1, NPROW )
JJ = MOD( JJ+NPCOL-1, NPCOL )
CALL INFOG2L( K-1, K-1, DESCA, NPROW, NPCOL, MYROW, MYCOL,
$ IROW1, ICOL1, ITMP1, ITMP2 )
END IF
40 CONTINUE
50 CONTINUE
CALL IGAMX2D( CONTXT, 'ALL', ' ', 1, 1, K, 1, ITMP1, ITMP2, -1,
$ -1, -1 )
RETURN
*
* End of PZLASMSUB
*
END
|