File: slaref.f

package info (click to toggle)
scalapack 1.7.4-2
  • links: PTS
  • area: main
  • in suites: etch, etch-m68k
  • size: 34,004 kB
  • ctags: 30,444
  • sloc: fortran: 310,201; ansic: 64,027; makefile: 1,838; sh: 4
file content (277 lines) | stat: -rw-r--r-- 10,523 bytes parent folder | download | duplicates (8)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
      SUBROUTINE SLAREF( TYPE, A, LDA, WANTZ, Z, LDZ, BLOCK, IROW1,
     $                    ICOL1, ISTART, ISTOP, ITMP1, ITMP2, LILOZ,
     $                    LIHIZ, VECS, V2, V3, T1, T2, T3 )
*
*  -- ScaLAPACK routine (version 1.7) --
*     University of Tennessee, Knoxville, Oak Ridge National Laboratory,
*     and University of California, Berkeley.
*     December 31, 1998
*
*     .. Scalar Arguments ..
      LOGICAL            BLOCK, WANTZ
      CHARACTER          TYPE
      INTEGER            ICOL1, IROW1, ISTART, ISTOP, ITMP1, ITMP2, LDA,
     $                   LDZ, LIHIZ, LILOZ
      REAL               T1, T2, T3, V2, V3
*     ..
*     .. Array Arguments ..
      REAL               A( LDA, * ), VECS( * ), Z( LDZ, * )
*     ..
*
*  Purpose
*  =======
*
*  SLAREF applies one or several Householder reflectors of size 3
*     to one or two matrices (if column is specified) on either their
*     rows or columns.
*
*  Arguments
*  =========
*
*  TYPE    (global input) CHARACTER*1
*          If 'R': Apply reflectors to the rows of the matrix
*              (apply from left)
*          Otherwise: Apply reflectors to the columns of the matrix
*          Unchanged on exit.
*
*  A       (global input/output) REAL array, (LDA,*)
*          On entry, the matrix to receive the reflections.
*          The updated matrix on exit.
*
*  LDA     (local input) INTEGER
*          On entry, the leading dimension of A.  Unchanged on exit.
*
*  WANTZ   (global input) LOGICAL
*          If .TRUE., then apply any column reflections to Z as well.
*          If .FALSE., then do no additional work on Z.
*
*  Z       (global input/output) REAL array, (LDZ,*)
*          On entry, the second matrix to receive column reflections.
*          This is changed only if WANTZ is set.
*
*  LDZ     (local input) INTEGER
*          On entry, the leading dimension of Z.  Unchanged on exit.
*
*  BLOCK   (global input) LOGICAL
*          If .TRUE., then apply several reflectors at once and read
*             their data from the VECS array.
*          If .FALSE., apply the single reflector given by V2, V3,
*             T1, T2, and T3.
*
*  IROW1   (local input/output) INTEGER
*          On entry, the local row element of A.
*          Undefined on output.
*
*
*  ICOL1   (local input/output) INTEGER
*          On entry, the local column element of A.
*          Undefined on output.
*
*  ISTART  (global input) INTEGER
*          Specifies the "number" of the first reflector.  This is
*              used as an index into VECS if BLOCK is set.
*              ISTART is ignored if BLOCK is .FALSE..
*
*  ISTOP   (global input) INTEGER
*          Specifies the "number" of the last reflector.  This is
*              used as an index into VECS if BLOCK is set.
*              ISTOP is ignored if BLOCK is .FALSE..
*
*  ITMP1   (local input) INTEGER
*          Starting range into A.  For rows, this is the local
*              first column.  For columns, this is the local first row.
*
*  ITMP2   (local input) INTEGER
*          Ending range into A.  For rows, this is the local last
*              column.  For columns, this is the local last row.
*
*  LILOZ
*  LIHIZ   (local input) INTEGER
*          These serve the same purpose as ITMP1,ITMP2 but for Z
*              when WANTZ is set.
*
*  VECS    (global input) REAL array of size 3*N (matrix
*                                                 size)
*          This holds the size 3 reflectors one after another and this
*              is only accessed when BLOCK is .TRUE.
*
*  V2
*  V3
*  T1
*  T2
*  T3      (global input/output) REAL
*          This holds information on a single size 3 Householder
*              reflector and is read when BLOCK is .FALSE., and
*              overwritten when BLOCK is .TRUE.
*
*  Implemented by:  G. Henry, November 17, 1996
*
*  =====================================================================
*
*     .. Local Scalars ..
      INTEGER            J, K
      REAL               H11, H22, SUM, T12, T13, T22, T23, T32, T33,
     $                   V22, V23, V32, V33
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MOD
*     ..
*     .. Executable Statements ..
*
      IF( LSAME( TYPE, 'R' ) ) THEN
         IF( BLOCK ) THEN
            DO 20 K = ISTART, ISTOP - MOD( ISTOP-ISTART+1, 3 ), 3
               V2 = VECS( ( K-1 )*3+1 )
               V3 = VECS( ( K-1 )*3+2 )
               T1 = VECS( ( K-1 )*3+3 )
               V22 = VECS( ( K-1 )*3+4 )
               V32 = VECS( ( K-1 )*3+5 )
               T12 = VECS( ( K-1 )*3+6 )
               V23 = VECS( ( K-1 )*3+7 )
               V33 = VECS( ( K-1 )*3+8 )
               T13 = VECS( ( K-1 )*3+9 )
               T2 = T1*V2
               T3 = T1*V3
               T22 = T12*V22
               T32 = T12*V32
               T23 = T13*V23
               T33 = T13*V33
               DO 10 J = ITMP1, ITMP2
                  SUM = A( IROW1, J ) + V2*A( IROW1+1, J ) +
     $                  V3*A( IROW1+2, J )
                  A( IROW1, J ) = A( IROW1, J ) - SUM*T1
                  H11 = A( IROW1+1, J ) - SUM*T2
                  H22 = A( IROW1+2, J ) - SUM*T3
                  SUM = H11 + V22*H22 + V32*A( IROW1+3, J )
                  A( IROW1+1, J ) = H11 - SUM*T12
                  H11 = H22 - SUM*T22
                  H22 = A( IROW1+3, J ) - SUM*T32
                  SUM = H11 + V23*H22 + V33*A( IROW1+4, J )
                  A( IROW1+2, J ) = H11 - SUM*T13
                  A( IROW1+3, J ) = H22 - SUM*T23
                  A( IROW1+4, J ) = A( IROW1+4, J ) - SUM*T33
   10          CONTINUE
               IROW1 = IROW1 + 3
   20       CONTINUE
            DO 40 K = ISTOP - MOD( ISTOP-ISTART+1, 3 ) + 1, ISTOP
               V2 = VECS( ( K-1 )*3+1 )
               V3 = VECS( ( K-1 )*3+2 )
               T1 = VECS( ( K-1 )*3+3 )
               T2 = T1*V2
               T3 = T1*V3
               DO 30 J = ITMP1, ITMP2
                  SUM = A( IROW1, J ) + V2*A( IROW1+1, J ) +
     $                  V3*A( IROW1+2, J )
                  A( IROW1, J ) = A( IROW1, J ) - SUM*T1
                  A( IROW1+1, J ) = A( IROW1+1, J ) - SUM*T2
                  A( IROW1+2, J ) = A( IROW1+2, J ) - SUM*T3
   30          CONTINUE
               IROW1 = IROW1 + 1
   40       CONTINUE
         ELSE
            DO 50 J = ITMP1, ITMP2
               SUM = A( IROW1, J ) + V2*A( IROW1+1, J ) +
     $               V3*A( IROW1+2, J )
               A( IROW1, J ) = A( IROW1, J ) - SUM*T1
               A( IROW1+1, J ) = A( IROW1+1, J ) - SUM*T2
               A( IROW1+2, J ) = A( IROW1+2, J ) - SUM*T3
   50       CONTINUE
         END IF
      ELSE
*
*        Do column transforms
*
         IF( BLOCK ) THEN
            DO 80 K = ISTART, ISTOP - MOD( ISTOP-ISTART+1, 3 ), 3
               V2 = VECS( ( K-1 )*3+1 )
               V3 = VECS( ( K-1 )*3+2 )
               T1 = VECS( ( K-1 )*3+3 )
               V22 = VECS( ( K-1 )*3+4 )
               V32 = VECS( ( K-1 )*3+5 )
               T12 = VECS( ( K-1 )*3+6 )
               V23 = VECS( ( K-1 )*3+7 )
               V33 = VECS( ( K-1 )*3+8 )
               T13 = VECS( ( K-1 )*3+9 )
               T2 = T1*V2
               T3 = T1*V3
               T22 = T12*V22
               T32 = T12*V32
               T23 = T13*V23
               T33 = T13*V33
               DO 60 J = ITMP1, ITMP2
                  SUM = A( J, ICOL1 ) + V2*A( J, ICOL1+1 ) +
     $                  V3*A( J, ICOL1+2 )
                  A( J, ICOL1 ) = A( J, ICOL1 ) - SUM*T1
                  H11 = A( J, ICOL1+1 ) - SUM*T2
                  H22 = A( J, ICOL1+2 ) - SUM*T3
                  SUM = H11 + V22*H22 + V32*A( J, ICOL1+3 )
                  A( J, ICOL1+1 ) = H11 - SUM*T12
                  H11 = H22 - SUM*T22
                  H22 = A( J, ICOL1+3 ) - SUM*T32
                  SUM = H11 + V23*H22 + V33*A( J, ICOL1+4 )
                  A( J, ICOL1+2 ) = H11 - SUM*T13
                  A( J, ICOL1+3 ) = H22 - SUM*T23
                  A( J, ICOL1+4 ) = A( J, ICOL1+4 ) - SUM*T33
   60          CONTINUE
               IF( WANTZ ) THEN
                  DO 70 J = LILOZ, LIHIZ
                     SUM = Z( J, ICOL1 ) + V2*Z( J, ICOL1+1 ) +
     $                     V3*Z( J, ICOL1+2 )
                     Z( J, ICOL1 ) = Z( J, ICOL1 ) - SUM*T1
                     H11 = Z( J, ICOL1+1 ) - SUM*T2
                     H22 = Z( J, ICOL1+2 ) - SUM*T3
                     SUM = H11 + V22*H22 + V32*Z( J, ICOL1+3 )
                     Z( J, ICOL1+1 ) = H11 - SUM*T12
                     H11 = H22 - SUM*T22
                     H22 = Z( J, ICOL1+3 ) - SUM*T32
                     SUM = H11 + V23*H22 + V33*Z( J, ICOL1+4 )
                     Z( J, ICOL1+2 ) = H11 - SUM*T13
                     Z( J, ICOL1+3 ) = H22 - SUM*T23
                     Z( J, ICOL1+4 ) = Z( J, ICOL1+4 ) - SUM*T33
   70             CONTINUE
               END IF
               ICOL1 = ICOL1 + 3
   80       CONTINUE
            DO 110 K = ISTOP - MOD( ISTOP-ISTART+1, 3 ) + 1, ISTOP
               V2 = VECS( ( K-1 )*3+1 )
               V3 = VECS( ( K-1 )*3+2 )
               T1 = VECS( ( K-1 )*3+3 )
               T2 = T1*V2
               T3 = T1*V3
               DO 90 J = ITMP1, ITMP2
                  SUM = A( J, ICOL1 ) + V2*A( J, ICOL1+1 ) +
     $                  V3*A( J, ICOL1+2 )
                  A( J, ICOL1 ) = A( J, ICOL1 ) - SUM*T1
                  A( J, ICOL1+1 ) = A( J, ICOL1+1 ) - SUM*T2
                  A( J, ICOL1+2 ) = A( J, ICOL1+2 ) - SUM*T3
   90          CONTINUE
               IF( WANTZ ) THEN
                  DO 100 J = LILOZ, LIHIZ
                     SUM = Z( J, ICOL1 ) + V2*Z( J, ICOL1+1 ) +
     $                     V3*Z( J, ICOL1+2 )
                     Z( J, ICOL1 ) = Z( J, ICOL1 ) - SUM*T1
                     Z( J, ICOL1+1 ) = Z( J, ICOL1+1 ) - SUM*T2
                     Z( J, ICOL1+2 ) = Z( J, ICOL1+2 ) - SUM*T3
  100             CONTINUE
               END IF
               ICOL1 = ICOL1 + 1
  110       CONTINUE
         ELSE
            DO 120 J = ITMP1, ITMP2
               SUM = A( J, ICOL1 ) + V2*A( J, ICOL1+1 ) +
     $               V3*A( J, ICOL1+2 )
               A( J, ICOL1 ) = A( J, ICOL1 ) - SUM*T1
               A( J, ICOL1+1 ) = A( J, ICOL1+1 ) - SUM*T2
               A( J, ICOL1+2 ) = A( J, ICOL1+2 ) - SUM*T3
  120       CONTINUE
         END IF
      END IF
      RETURN
*
*     End of SLAREF
*
      END