File: zsteqr2.f

package info (click to toggle)
scalapack 1.7.4-2
  • links: PTS
  • area: main
  • in suites: etch, etch-m68k
  • size: 34,004 kB
  • ctags: 30,444
  • sloc: fortran: 310,201; ansic: 64,027; makefile: 1,838; sh: 4
file content (662 lines) | stat: -rw-r--r-- 18,815 bytes parent folder | download | duplicates (12)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
      SUBROUTINE ZSTEQR2( COMPZ, N, D, E, Z, LDZ, NR, WORK, INFO )
*
*  -- ScaLAPACK routine (version 1.7) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     November 15, 1997
*
*     .. Scalar Arguments ..
      CHARACTER          COMPZ
      INTEGER            INFO, LDZ, N, NR
*     ..
*     .. Array Arguments ..
      DOUBLE PRECISION   D( * ), E( * ), WORK( * )
      COMPLEX*16         Z( LDZ, * )
*     ..
*
*  Purpose
*  =======
*
*  ZSTEQR2 is a modified version of LAPACK routine ZSTEQR.
*  ZSTEQR2 computes all eigenvalues and, optionally, eigenvectors of a
*  symmetric tridiagonal matrix using the implicit QL or QR method.
*  ZSTEQR2 is modified from ZSTEQR to allow each ScaLAPACK process
*  running ZSTEQR2 to perform updates on a distributed matrix Q.
*  Proper usage of ZSTEQR2 can be gleaned from
*  examination of ScaLAPACK's *  PZHEEV.
*  ZSTEQR2 incorporates changes attributed to Greg Henry.
*
*  Arguments
*  =========
*
*  COMPZ   (input) CHARACTER*1
*          = 'N':  Compute eigenvalues only.
*          = 'I':  Compute eigenvalues and eigenvectors of the
*                  tridiagonal matrix.  Z must be initialized to the
*                  identity matrix by PZLASET or ZLASET prior
*                  to entering this subroutine.
*
*  N       (input) INTEGER
*          The order of the matrix.  N >= 0.
*
*  D       (input/output) DOUBLE PRECISION array, dimension (N)
*          On entry, the diagonal elements of the tridiagonal matrix.
*          On exit, if INFO = 0, the eigenvalues in ascending order.
*
*  E       (input/output) DOUBLE PRECISION array, dimension (N-1)
*          On entry, the (n-1) subdiagonal elements of the tridiagonal
*          matrix.
*          On exit, E has been destroyed.
*
*  Z       (local input/local output) COMPLEX*16 array, global
*          dimension (N, N), local dimension (LDZ, NR).
*          On entry, if  COMPZ = 'V', then Z contains the orthogonal
*          matrix used in the reduction to tridiagonal form.
*          On exit, if INFO = 0, then if  COMPZ = 'V', Z contains the
*          orthonormal eigenvectors of the original symmetric matrix,
*          and if COMPZ = 'I', Z contains the orthonormal eigenvectors
*          of the symmetric tridiagonal matrix.
*          If COMPZ = 'N', then Z is not referenced.
*
*  LDZ     (input) INTEGER
*          The leading dimension of the array Z.  LDZ >= 1, and if
*          eigenvectors are desired, then  LDZ >= max(1,N).
*
*  NR      (input) INTEGER
*          NR = MAX(1, NUMROC( N, NB, MYPROW, 0, NPROCS ) ).
*          If COMPZ = 'N', then NR is not referenced.
*
*  WORK    (workspace) DOUBLE PRECISION array, dimension (max(1,2*N-2))
*          If COMPZ = 'N', then WORK is not referenced.
*
*  INFO    (output) INTEGER
*          = 0:  successful exit
*          < 0:  if INFO = -i, the i-th argument had an illegal value
*          > 0:  the algorithm has failed to find all the eigenvalues in
*                a total of 30*N iterations; if INFO = i, then i
*                elements of E have not converged to zero; on exit, D
*                and E contain the elements of a symmetric tridiagonal
*                matrix which is orthogonally similar to the original
*                matrix.
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ZERO, ONE, TWO, THREE, HALF
      PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0, TWO = 2.0D0,
     $                   THREE = 3.0D0, HALF = 0.5D0 )
      COMPLEX*16         CONE
      PARAMETER          ( CONE = ( 1.0D0, 1.0D0 ) )
      INTEGER            MAXIT, NMAXLOOK
      PARAMETER          ( MAXIT = 30, NMAXLOOK = 15 )
*     ..
*     .. Local Scalars ..
      INTEGER            I, ICOMPZ, II, ILAST, ISCALE, J, JTOT, K, L,
     $                   L1, LEND, LENDM1, LENDP1, LENDSV, LM1, LSV, M,
     $                   MM, MM1, NLOOK, NM1, NMAXIT
      DOUBLE PRECISION   ANORM, B, C, EPS, EPS2, F, G, GP, OLDEL, OLDGP,
     $                   OLDRP, P, R, RP, RT1, RT2, S, SAFMAX, SAFMIN,
     $                   SSFMAX, SSFMIN, TST, TST1
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      DOUBLE PRECISION   DLAMCH, DLANST, DLAPY2
      EXTERNAL           LSAME, DLAMCH, DLANST, DLAPY2
*     ..
*     .. External Subroutines ..
      EXTERNAL           DLAEV2, DLARTG, DLASCL, DSTERF, XERBLA, ZLASR,
     $                   ZSWAP
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, MAX, SIGN, SQRT
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters.
*
      ILAST = 0
      INFO = 0
*
      IF( LSAME( COMPZ, 'N' ) ) THEN
         ICOMPZ = 0
      ELSEIF( LSAME( COMPZ, 'I' ) ) THEN
         ICOMPZ = 1
      ELSE
         ICOMPZ = -1
      ENDIF
      IF( ICOMPZ.LT.0 ) THEN
         INFO = -1
      ELSEIF( N.LT.0 ) THEN
         INFO = -2
      ELSEIF( ICOMPZ.GT.0 .AND. LDZ.LT.MAX( 1, NR ) ) THEN
         INFO = -6
      ENDIF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'ZSTEQR2', -INFO )
         RETURN
      ENDIF
*
*     Quick return if possible
*
      IF( N.EQ.0 )
     $   RETURN
*
*     If eigenvectors aren't not desired, this is faster
*
      IF( ICOMPZ.EQ.0 ) THEN
         CALL DSTERF( N, D, E, INFO )
         RETURN
      ENDIF
*
      IF( N.EQ.1 ) THEN
         Z( 1, 1 ) = CONE
         RETURN
      ENDIF
*
*     Determine the unit roundoff and over/underflow thresholds.
*
      EPS = DLAMCH( 'E' )
      EPS2 = EPS**2
      SAFMIN = DLAMCH( 'S' )
      SAFMAX = ONE / SAFMIN
      SSFMAX = SQRT( SAFMAX ) / THREE
      SSFMIN = SQRT( SAFMIN ) / EPS2
*
*     Compute the eigenvalues and eigenvectors of the tridiagonal
*     matrix.
*
      NMAXIT = N*MAXIT
      JTOT = 0
*
*     Determine where the matrix splits and choose QL or QR iteration
*     for each block, according to whether top or bottom diagonal
*     element is smaller.
*
      L1 = 1
      NM1 = N - 1
*
   10 CONTINUE
      IF( L1.GT.N )
     $   GOTO 220
      IF( L1.GT.1 )
     $   E( L1-1 ) = ZERO
      IF( L1.LE.NM1 ) THEN
         DO 20 M = L1, NM1
            TST = ABS( E( M ) )
            IF( TST.EQ.ZERO )
     $         GOTO 30
            IF( TST.LE.( SQRT( ABS( D( M ) ) )*SQRT( ABS( D( M+
     $          1 ) ) ) )*EPS ) THEN
               E( M ) = ZERO
               GOTO 30
            ENDIF
   20    CONTINUE
      ENDIF
      M = N
*
   30 CONTINUE
      L = L1
      LSV = L
      LEND = M
      LENDSV = LEND
      L1 = M + 1
      IF( LEND.EQ.L )
     $   GOTO 10
*
*     Scale submatrix in rows and columns L to LEND
*
      ANORM = DLANST( 'I', LEND-L+1, D( L ), E( L ) )
      ISCALE = 0
      IF( ANORM.EQ.ZERO )
     $   GOTO 10
      IF( ANORM.GT.SSFMAX ) THEN
         ISCALE = 1
         CALL DLASCL( 'G', 0, 0, ANORM, SSFMAX, LEND-L+1, 1, D( L ), N,
     $                INFO )
         CALL DLASCL( 'G', 0, 0, ANORM, SSFMAX, LEND-L, 1, E( L ), N,
     $                INFO )
      ELSEIF( ANORM.LT.SSFMIN ) THEN
         ISCALE = 2
         CALL DLASCL( 'G', 0, 0, ANORM, SSFMIN, LEND-L+1, 1, D( L ), N,
     $                INFO )
         CALL DLASCL( 'G', 0, 0, ANORM, SSFMIN, LEND-L, 1, E( L ), N,
     $                INFO )
      ENDIF
*
*     Choose between QL and QR iteration
*
      IF( ABS( D( LEND ) ).LT.ABS( D( L ) ) ) THEN
         LEND = LSV
         L = LENDSV
      ENDIF
*
      IF( LEND.GT.L ) THEN
*
*        QL Iteration
*
*        Look for small subdiagonal element.
*
   40    CONTINUE
         IF( L.NE.LEND ) THEN
            LENDM1 = LEND - 1
            DO 50 M = L, LENDM1
               TST = ABS( E( M ) )**2
               IF( TST.LE.( EPS2*ABS( D( M ) ) )*ABS( D( M+1 ) )+
     $             SAFMIN )GOTO 60
   50       CONTINUE
         ENDIF
*
         M = LEND
*
   60    CONTINUE
         IF( M.LT.LEND )
     $      E( M ) = ZERO
         P = D( L )
         IF( M.EQ.L )
     $      GOTO 110
*
*        If remaining matrix is 2-by-2, use DLAE2 or DLAEV2
*        to compute its eigensystem.
*
         IF( M.EQ.L+1 ) THEN
            CALL DLAEV2( D( L ), E( L ), D( L+1 ), RT1, RT2, C, S )
            WORK( L ) = C
            WORK( N-1+L ) = S
            CALL ZLASR( 'R', 'V', 'B', NR, 2, WORK( L ), WORK( N-1+L ),
     $                  Z( 1, L ), LDZ )
            D( L ) = RT1
            D( L+1 ) = RT2
            E( L ) = ZERO
            L = L + 2
            IF( L.LE.LEND )
     $         GOTO 40
            GOTO 200
         ENDIF
*
         IF( JTOT.EQ.NMAXIT )
     $      GOTO 200
         JTOT = JTOT + 1
*
*        Form shift.
*
         G = ( D( L+1 )-P ) / ( TWO*E( L ) )
         R = DLAPY2( G, ONE )
         G = D( M ) - P + ( E( L ) / ( G+SIGN( R, G ) ) )
*
         IF( ICOMPZ.EQ.0 ) THEN
*           Do not do a lookahead!
            GOTO 90
         ENDIF
*
         OLDEL = ABS( E( L ) )
         GP = G
         RP = R
         TST = ABS( E( L ) )**2
         TST = TST / ( ( EPS2*ABS( D( L ) ) )*ABS( D( L+1 ) )+SAFMIN )
*
         NLOOK = 1
         IF( ( TST.GT.ONE ) .AND. ( NLOOK.LE.NMAXLOOK ) ) THEN
   70       CONTINUE
*
*           This is the lookahead loop, going until we have
*           convergence or too many steps have been taken.
*
            S = ONE
            C = ONE
            P = ZERO
            MM1 = M - 1
            DO 80 I = MM1, L, -1
               F = S*E( I )
               B = C*E( I )
               CALL DLARTG( GP, F, C, S, RP )
               GP = D( I+1 ) - P
               RP = ( D( I )-GP )*S + TWO*C*B
               P = S*RP
               IF( I.NE.L )
     $            GP = C*RP - B
   80       CONTINUE
            OLDGP = GP
            OLDRP = RP
*           Find GP & RP for the next iteration
            IF( ABS( C*OLDRP-B ).GT.SAFMIN ) THEN
               GP = ( ( OLDGP+P )-( D( L )-P ) ) / ( TWO*( C*OLDRP-B ) )
            ELSE
*
*           Goto put in by G. Henry to fix ALPHA problem
*
               GOTO 90
*              GP = ( ( OLDGP+P )-( D( L )-P ) ) /
*    $              ( TWO*( C*OLDRP-B )+SAFMIN )
            ENDIF
            RP = DLAPY2( GP, ONE )
            GP = D( M ) - ( D( L )-P ) +
     $           ( ( C*OLDRP-B ) / ( GP+SIGN( RP, GP ) ) )
            TST1 = TST
            TST = ABS( C*OLDRP-B )**2
            TST = TST / ( ( EPS2*ABS( D( L )-P ) )*ABS( OLDGP+P )+
     $            SAFMIN )
*           Make sure that we are making progress
            IF( ABS( C*OLDRP-B ).GT.0.9D0*OLDEL ) THEN
               IF( ABS( C*OLDRP-B ).GT.OLDEL ) THEN
                  GP = G
                  RP = R
               ENDIF
               TST = HALF
            ELSE
               OLDEL = ABS( C*OLDRP-B )
            ENDIF
            NLOOK = NLOOK + 1
            IF( ( TST.GT.ONE ) .AND. ( NLOOK.LE.NMAXLOOK ) )
     $         GOTO 70
         ENDIF
*
         IF( ( TST.LE.ONE ) .AND. ( TST.NE.HALF ) .AND.
     $       ( ABS( P ).LT.EPS*ABS( D( L ) ) ) .AND.
     $       ( ILAST.EQ.L ) .AND. ( ABS( E( L ) )**2.LE.10000.0D0*
     $       ( ( EPS2*ABS( D( L ) ) )*ABS( D( L+1 ) )+SAFMIN ) ) ) THEN
*
*           Skip the current step: the subdiagonal info is just noise.
*
            M = L
            E( M ) = ZERO
            P = D( L )
            JTOT = JTOT - 1
            GOTO 110
         ENDIF
         G = GP
         R = RP
*
*        Lookahead over
*
   90    CONTINUE
*
         S = ONE
         C = ONE
         P = ZERO
*
*        Inner loop
*
         MM1 = M - 1
         DO 100 I = MM1, L, -1
            F = S*E( I )
            B = C*E( I )
            CALL DLARTG( G, F, C, S, R )
            IF( I.NE.M-1 )
     $         E( I+1 ) = R
            G = D( I+1 ) - P
            R = ( D( I )-G )*S + TWO*C*B
            P = S*R
            D( I+1 ) = G + P
            G = C*R - B
*
*           If eigenvectors are desired, then save rotations.
*
            WORK( I ) = C
            WORK( N-1+I ) = -S
*
  100    CONTINUE
*
*        If eigenvectors are desired, then apply saved rotations.
*
         MM = M - L + 1
         CALL ZLASR( 'R', 'V', 'B', NR, MM, WORK( L ), WORK( N-1+L ),
     $               Z( 1, L ), LDZ )
*
         D( L ) = D( L ) - P
         E( L ) = G
         ILAST = L
         GOTO 40
*
*        Eigenvalue found.
*
  110    CONTINUE
         D( L ) = P
*
         L = L + 1
         IF( L.LE.LEND )
     $      GOTO 40
         GOTO 200
*
      ELSE
*
*        QR Iteration
*
*        Look for small superdiagonal element.
*
  120    CONTINUE
         IF( L.NE.LEND ) THEN
            LENDP1 = LEND + 1
            DO 130 M = L, LENDP1, -1
               TST = ABS( E( M-1 ) )**2
               IF( TST.LE.( EPS2*ABS( D( M ) ) )*ABS( D( M-1 ) )+
     $             SAFMIN )GOTO 140
  130       CONTINUE
         ENDIF
*
         M = LEND
*
  140    CONTINUE
         IF( M.GT.LEND )
     $      E( M-1 ) = ZERO
         P = D( L )
         IF( M.EQ.L )
     $      GOTO 190
*
*        If remaining matrix is 2-by-2, use DLAE2 or DLAEV2
*        to compute its eigensystem.
*
         IF( M.EQ.L-1 ) THEN
            CALL DLAEV2( D( L-1 ), E( L-1 ), D( L ), RT1, RT2, C, S )
            WORK( M ) = C
            WORK( N-1+M ) = S
            CALL ZLASR( 'R', 'V', 'F', NR, 2, WORK( M ), WORK( N-1+M ),
     $                  Z( 1, L-1 ), LDZ )
            D( L-1 ) = RT1
            D( L ) = RT2
            E( L-1 ) = ZERO
            L = L - 2
            IF( L.GE.LEND )
     $         GOTO 120
            GOTO 200
         ENDIF
*
         IF( JTOT.EQ.NMAXIT )
     $      GOTO 200
         JTOT = JTOT + 1
*
*        Form shift.
*
         G = ( D( L-1 )-P ) / ( TWO*E( L-1 ) )
         R = DLAPY2( G, ONE )
         G = D( M ) - P + ( E( L-1 ) / ( G+SIGN( R, G ) ) )
*
         IF( ICOMPZ.EQ.0 ) THEN
*           Do not do a lookahead!
            GOTO 170
         ENDIF
*
         OLDEL = ABS( E( L-1 ) )
         GP = G
         RP = R
         TST = ABS( E( L-1 ) )**2
         TST = TST / ( ( EPS2*ABS( D( L ) ) )*ABS( D( L-1 ) )+SAFMIN )
         NLOOK = 1
         IF( ( TST.GT.ONE ) .AND. ( NLOOK.LE.NMAXLOOK ) ) THEN
  150       CONTINUE
*
*           This is the lookahead loop, going until we have
*           convergence or too many steps have been taken.
*
            S = ONE
            C = ONE
            P = ZERO
*
*        Inner loop
*
            LM1 = L - 1
            DO 160 I = M, LM1
               F = S*E( I )
               B = C*E( I )
               CALL DLARTG( GP, F, C, S, RP )
               GP = D( I ) - P
               RP = ( D( I+1 )-GP )*S + TWO*C*B
               P = S*RP
               IF( I.LT.LM1 )
     $            GP = C*RP - B
  160       CONTINUE
            OLDGP = GP
            OLDRP = RP
*           Find GP & RP for the next iteration
            IF( ABS( C*OLDRP-B ).GT.SAFMIN ) THEN
               GP = ( ( OLDGP+P )-( D( L )-P ) ) / ( TWO*( C*OLDRP-B ) )
            ELSE
*
*           Goto put in by G. Henry to fix ALPHA problem
*
               GOTO 170
*              GP = ( ( OLDGP+P )-( D( L )-P ) ) /
*    $              ( TWO*( C*OLDRP-B )+SAFMIN )
            ENDIF
            RP = DLAPY2( GP, ONE )
            GP = D( M ) - ( D( L )-P ) +
     $           ( ( C*OLDRP-B ) / ( GP+SIGN( RP, GP ) ) )
            TST1 = TST
            TST = ABS( ( C*OLDRP-B ) )**2
            TST = TST / ( ( EPS2*ABS( D( L )-P ) )*ABS( OLDGP+P )+
     $            SAFMIN )
*           Make sure that we are making progress
            IF( ABS( C*OLDRP-B ).GT.0.9D0*OLDEL ) THEN
               IF( ABS( C*OLDRP-B ).GT.OLDEL ) THEN
                  GP = G
                  RP = R
               ENDIF
               TST = HALF
            ELSE
               OLDEL = ABS( C*OLDRP-B )
            ENDIF
            NLOOK = NLOOK + 1
            IF( ( TST.GT.ONE ) .AND. ( NLOOK.LE.NMAXLOOK ) )
     $         GOTO 150
         ENDIF
         IF( ( TST.LE.ONE ) .AND. ( TST.NE.HALF ) .AND.
     $       ( ABS( P ).LT.EPS*ABS( D( L ) ) ) .AND.
     $       ( ILAST.EQ.L ) .AND. ( ABS( E( L-1 ) )**2.LE.10000.0D0*
     $       ( ( EPS2*ABS( D( L-1 ) ) )*ABS( D( L ) )+SAFMIN ) ) ) THEN
*
*           Skip the current step: the subdiagonal info is just noise.
*
            M = L
            E( M-1 ) = ZERO
            P = D( L )
            JTOT = JTOT - 1
            GOTO 190
         ENDIF
*
         G = GP
         R = RP
*
*        Lookahead over
*
  170    CONTINUE
*
         S = ONE
         C = ONE
         P = ZERO
         DO 180 I = M, LM1
            F = S*E( I )
            B = C*E( I )
            CALL DLARTG( G, F, C, S, R )
            IF( I.NE.M )
     $         E( I-1 ) = R
            G = D( I ) - P
            R = ( D( I+1 )-G )*S + TWO*C*B
            P = S*R
            D( I ) = G + P
            G = C*R - B
*
*           If eigenvectors are desired, then save rotations.
*
            WORK( I ) = C
            WORK( N-1+I ) = S
*
  180    CONTINUE
*
*        If eigenvectors are desired, then apply saved rotations.
*
         MM = L - M + 1
         CALL ZLASR( 'R', 'V', 'F', NR, MM, WORK( M ), WORK( N-1+M ),
     $               Z( 1, M ), LDZ )
*
         D( L ) = D( L ) - P
         E( LM1 ) = G
         ILAST = L
         GOTO 120
*
*        Eigenvalue found.
*
  190    CONTINUE
         D( L ) = P
*
         L = L - 1
         IF( L.GE.LEND )
     $      GOTO 120
         GOTO 200
*
      ENDIF
*
*     Undo scaling if necessary
*
  200 CONTINUE
      IF( ISCALE.EQ.1 ) THEN
         CALL DLASCL( 'G', 0, 0, SSFMAX, ANORM, LENDSV-LSV+1, 1,
     $                D( LSV ), N, INFO )
         CALL DLASCL( 'G', 0, 0, SSFMAX, ANORM, LENDSV-LSV, 1, E( LSV ),
     $                N, INFO )
      ELSEIF( ISCALE.EQ.2 ) THEN
         CALL DLASCL( 'G', 0, 0, SSFMIN, ANORM, LENDSV-LSV+1, 1,
     $                D( LSV ), N, INFO )
         CALL DLASCL( 'G', 0, 0, SSFMIN, ANORM, LENDSV-LSV, 1, E( LSV ),
     $                N, INFO )
      ENDIF
*
*     Check for no convergence to an eigenvalue after a total
*     of N*MAXIT iterations.
*
      IF( JTOT.LT.NMAXIT )
     $   GOTO 10
      DO 210 I = 1, N - 1
         IF( E( I ).NE.ZERO )
     $      INFO = INFO + 1
  210 CONTINUE
      GOTO 250
*
*     Order eigenvalues and eigenvectors.
*
  220 CONTINUE
*
*        Use Selection Sort to minimize swaps of eigenvectors
*
      DO 240 II = 2, N
         I = II - 1
         K = I
         P = D( I )
         DO 230 J = II, N
            IF( D( J ).LT.P ) THEN
               K = J
               P = D( J )
            ENDIF
  230    CONTINUE
         IF( K.NE.I ) THEN
            D( K ) = D( I )
            D( I ) = P
            CALL ZSWAP( NR, Z( 1, I ), 1, Z( 1, K ), 1 )
         ENDIF
  240 CONTINUE
*
  250 CONTINUE
*     WRITE( *, FMT = * )'JTOT', JTOT
      RETURN
*
*     End of DSTEQR2
*
      END