File: psgebdrv.f

package info (click to toggle)
scalapack 1.7.4-2
  • links: PTS
  • area: main
  • in suites: etch, etch-m68k
  • size: 34,004 kB
  • ctags: 30,444
  • sloc: fortran: 310,201; ansic: 64,027; makefile: 1,838; sh: 4
file content (505 lines) | stat: -rw-r--r-- 19,792 bytes parent folder | download | duplicates (12)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
      SUBROUTINE PSGEBDRV( M, N, A, IA, JA, DESCA, D, E, TAUQ, TAUP,
     $                     WORK, INFO )
*
*  -- ScaLAPACK routine (version 1.7) --
*     University of Tennessee, Knoxville, Oak Ridge National Laboratory,
*     and University of California, Berkeley.
*     May 1, 1997
*
*     .. Scalar Arguments ..
      INTEGER              INFO, IA, JA, M, N
*     ..
*     .. Array Arguments ..
      INTEGER              DESCA( * )
      REAL               A( * ), D( * ), E( * ), TAUP( * ), TAUQ( * ),
     $                     WORK( * )
*     ..
*
*  Purpose
*  =======
*
*  PSGEBDRV computes sub( A ) = A(IA:IA+M-1,JA:JA+N-1) from sub( A ),
*  Q, P returned by PSGEBRD:
*
*                         sub( A ) := Q * B * P'.
*
*  Notes
*  =====
*
*  Each global data object is described by an associated description
*  vector.  This vector stores the information required to establish
*  the mapping between an object element and its corresponding process
*  and memory location.
*
*  Let A be a generic term for any 2D block cyclicly distributed array.
*  Such a global array has an associated description vector DESCA.
*  In the following comments, the character _ should be read as
*  "of the global array".
*
*  NOTATION        STORED IN      EXPLANATION
*  --------------- -------------- --------------------------------------
*  DTYPE_A(global) DESCA( DTYPE_ )The descriptor type.  In this case,
*                                 DTYPE_A = 1.
*  CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
*                                 the BLACS process grid A is distribu-
*                                 ted over. The context itself is glo-
*                                 bal, but the handle (the integer
*                                 value) may vary.
*  M_A    (global) DESCA( M_ )    The number of rows in the global
*                                 array A.
*  N_A    (global) DESCA( N_ )    The number of columns in the global
*                                 array A.
*  MB_A   (global) DESCA( MB_ )   The blocking factor used to distribute
*                                 the rows of the array.
*  NB_A   (global) DESCA( NB_ )   The blocking factor used to distribute
*                                 the columns of the array.
*  RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
*                                 row of the array A is distributed.
*  CSRC_A (global) DESCA( CSRC_ ) The process column over which the
*                                 first column of the array A is
*                                 distributed.
*  LLD_A  (local)  DESCA( LLD_ )  The leading dimension of the local
*                                 array.  LLD_A >= MAX(1,LOCr(M_A)).
*
*  Let K be the number of rows or columns of a distributed matrix,
*  and assume that its process grid has dimension p x q.
*  LOCr( K ) denotes the number of elements of K that a process
*  would receive if K were distributed over the p processes of its
*  process column.
*  Similarly, LOCc( K ) denotes the number of elements of K that a
*  process would receive if K were distributed over the q processes of
*  its process row.
*  The values of LOCr() and LOCc() may be determined via a call to the
*  ScaLAPACK tool function, NUMROC:
*          LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
*          LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).
*  An upper bound for these quantities may be computed by:
*          LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
*          LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A
*
*  Arguments
*  =========
*
*  M       (global input) INTEGER
*          The number of rows to be operated on, i.e. the number of rows
*          of the distributed submatrix sub( A ). M >= 0.
*
*  N       (global input) INTEGER
*          The number of columns to be operated on, i.e. the number of
*          columns of the distributed submatrix sub( A ). N >= 0.
*
*  A       (local input/local output) REAL pointer into the
*          local memory to an array of dimension (LLD_A, LOCc(JA+N-1)).
*          On entry, this array contains the local pieces of sub( A )
*          as returned by PSGEBRD. On exit, the original distribu-
*          ted matrix sub( A ) is restored.
*
*  IA      (global input) INTEGER
*          The row index in the global array A indicating the first
*          row of sub( A ).
*
*  JA      (global input) INTEGER
*          The column index in the global array A indicating the
*          first column of sub( A ).
*
*  DESCA   (global and local input) INTEGER array of dimension DLEN_.
*          The array descriptor for the distributed matrix A.
*
*  D       (local input) REAL array, dimension
*          LOCc(JA+MIN(M,N)-1) if M >= N; LOCr(IA+MIN(M,N)-1) otherwise.
*          The distributed diagonal elements of the bidiagonal matrix
*          B: D(i) = A(i,i). D is tied to the distributed matrix A.
*
*  E       (local input) REAL array, dimension
*          LOCr(IA+MIN(M,N)-1) if M >= N; LOCc(JA+MIN(M,N)-2) otherwise.
*          The distributed off-diagonal elements of the bidiagonal
*          distributed matrix B:
*          if m >= n, E(i) = A(i,i+1) for i = 1,2,...,n-1;
*          if m < n, E(i) = A(i+1,i) for i = 1,2,...,m-1.
*          E is tied to the distributed matrix A.
*
*  TAUQ    (local input) REAL array dimension
*          LOCc(JA+MIN(M,N)-1). The scalar factors of the elementary
*          reflectors which represent the orthogonal matrix Q. TAUQ
*          is tied to the distributed matrix A. See Further Details.
*
*  TAUP    (local input) REAL array, dimension
*          LOCr(IA+MIN(M,N)-1). The scalar factors of the elementary
*          reflectors which represent the orthogonal matrix P. TAUP
*          is tied to the distributed matrix A. See Further Details.
*
*  WORK    (local workspace) REAL array, dimension (LWORK)
*          LWORK >= 2*NB*( MP + NQ + NB )
*
*          where NB = MB_A = NB_A,
*          IROFFA = MOD( IA-1, NB ), ICOFFA = MOD( JA-1, NB ),
*          IAROW = INDXG2P( IA, NB, MYROW, RSRC_A, NPROW ),
*          IACOL = INDXG2P( JA, NB, MYCOL, CSRC_A, NPCOL ),
*          MP = NUMROC( M+IROFFA, NB, MYROW, IAROW, NPROW ),
*          NQ = NUMROC( N+ICOFFA, NB, MYCOL, IACOL, NPCOL ).
*
*          INDXG2P and NUMROC are ScaLAPACK tool functions;
*          MYROW, MYCOL, NPROW and NPCOL can be determined by calling
*          the subroutine BLACS_GRIDINFO.
*
*  INFO    (global output) INTEGER
*          On exit, if INFO <> 0, a discrepancy has been found between
*          the diagonal and off-diagonal elements of A and the copies
*          contained in the arrays D and E.
*
*  =====================================================================
*
*     .. Parameters ..
      INTEGER            BLOCK_CYCLIC_2D, CSRC_, CTXT_, DLEN_, DTYPE_,
     $                   LLD_, MB_, M_, NB_, N_, RSRC_
      PARAMETER          ( BLOCK_CYCLIC_2D = 1, DLEN_ = 9, DTYPE_ = 1,
     $                     CTXT_ = 2, M_ = 3, N_ = 4, MB_ = 5, NB_ = 6,
     $                     RSRC_ = 7, CSRC_ = 8, LLD_ = 9 )
      REAL               EIGHT, ONE, ZERO
      PARAMETER          ( EIGHT = 8.0E+0, ONE = 1.0E+0, ZERO = 0.0E+0 )
*     ..
*     .. Local Scalars ..
      INTEGER            I, IACOL, IAROW, ICTXT, IIA, IL, IPTP, IPTQ,
     $                   IPV, IPW, IPWK, IOFF, IV, J, JB, JJA, JL, JV,
     $                   K, MN, MP, MYCOL, MYROW, NB, NPCOL, NPROW, NQ
      REAL               ADDBND, D1, D2, E1, E2
*     ..
*     .. Local Arrays ..
      INTEGER            DESCD( DLEN_ ), DESCE( DLEN_ ), DESCV( DLEN_ ),
     $                   DESCW( DLEN_ )
*     ..
*     .. External Subroutines ..
      EXTERNAL           BLACS_GRIDINFO, DESCSET, IGSUM2D, INFOG2L,
     $                   PSLACPY, PSLARFB, PSLARFT, PSLASET,
     $                   PSELGET
*     ..
*     .. External Functions ..
      INTEGER            INDXG2P, NUMROC
      REAL               PSLAMCH
      EXTERNAL           INDXG2P, NUMROC, PSLAMCH
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, MAX, MIN, MOD
*     ..
*     .. Executable Statements ..
*
*     Get grid parameters
*
      ICTXT = DESCA( CTXT_ )
      CALL BLACS_GRIDINFO( ICTXT, NPROW, NPCOL, MYROW, MYCOL )
*
      INFO = 0
      NB = DESCA( MB_ )
      IOFF = MOD( IA-1, NB )
      CALL INFOG2L( IA, JA, DESCA, NPROW, NPCOL, MYROW, MYCOL, IIA, JJA,
     $              IAROW, IACOL )
      MP = NUMROC( M+IOFF, NB, MYROW, IAROW, NPROW )
      NQ = NUMROC( N+IOFF, NB, MYCOL, IACOL, NPCOL )
      IPV  = 1
      IPW  = IPV + MP*NB
      IPTP = IPW + NQ*NB
      IPTQ = IPTP + NB*NB
      IPWK = IPTQ + NB*NB
*
      IV = 1
      JV = 1
      MN = MIN( M, N )
      IL = MAX( ( (IA+MN-2) / NB )*NB + 1, IA )
      JL = MAX( ( (JA+MN-2) / NB )*NB + 1, JA )
      IAROW = INDXG2P( IL, NB, MYROW, DESCA( RSRC_ ), NPROW )
      IACOL = INDXG2P( JL, NB, MYCOL, DESCA( CSRC_ ), NPCOL )
      CALL DESCSET( DESCV, IA+M-IL, NB, NB, NB, IAROW, IACOL, ICTXT,
     $              MAX( 1, MP ) )
      CALL DESCSET( DESCW, NB, JA+N-JL, NB, NB, IAROW, IACOL, ICTXT,
     $              NB )
*
      ADDBND = EIGHT * PSLAMCH( ICTXT, 'eps' )
*
*     When A is an upper bidiagonal form
*
      IF( M.GE.N ) THEN
*
         CALL DESCSET( DESCD, 1, JA+MN-1, 1, DESCA( NB_ ), MYROW,
     $                 DESCA( CSRC_ ), DESCA( CTXT_ ), 1 )
         CALL DESCSET( DESCE, IA+MN-1, 1, DESCA( MB_ ), 1,
     $                 DESCA( RSRC_ ), MYCOL, DESCA( CTXT_ ),
     $                 DESCA( LLD_ ) )
*
         DO 10 J = 0, MN-1
            D1 = ZERO
            E1 = ZERO
            D2 = ZERO
            E2 = ZERO
            CALL PSELGET( ' ', ' ', D2, D, 1, JA+J, DESCD )
            CALL PSELGET( 'Columnwise', ' ', D1, A, IA+J, JA+J, DESCA )
            IF( J.LT.(MN-1) ) THEN
               CALL PSELGET( ' ', ' ', E2, E, IA+J, 1, DESCE )
               CALL PSELGET( 'Rowwise', ' ', E1, A, IA+J, JA+J+1,
     $                       DESCA )
            END IF
*
            IF( ( ABS( D1 - D2 ).GT.( ABS( D2 ) * ADDBND ) ) .OR.
     $          ( ABS( E1 - E2 ).GT.( ABS( E2 ) * ADDBND ) ) )
     $         INFO = INFO + 1
   10    CONTINUE
*
         DO 20 J = JL, JA+NB-IOFF, -NB
            JB = MIN( JA+N-J, NB )
            I  = IA + J - JA
            K  = I - IA + 1
*
*           Compute upper triangular matrix TQ from TAUQ.
*
            CALL PSLARFT( 'Forward', 'Columnwise', M-K+1, JB, A, I, J,
     $                    DESCA, TAUQ, WORK( IPTQ ), WORK( IPWK ) )
*
*           Copy Householder vectors into workspace.
*
            CALL PSLACPY( 'Lower', M-K+1, JB, A, I, J, DESCA,
     $                    WORK( IPV ), IV, JV, DESCV )
            CALL PSLASET( 'Upper', M-K+1, JB, ZERO, ONE, WORK( IPV ),
     $                    IV, JV, DESCV )
*
*           Zero out the strict lower triangular part of A.
*
            CALL PSLASET( 'Lower', M-K, JB, ZERO, ZERO, A, I+1, J,
     $                    DESCA )
*
*           Compute upper triangular matrix TP from TAUP.
*
            CALL PSLARFT( 'Forward', 'Rowwise', N-K, JB, A, I, J+1,
     $                    DESCA, TAUP, WORK( IPTP ), WORK( IPWK ) )
*
*           Copy Householder vectors into workspace.
*
            CALL PSLACPY( 'Upper', JB, N-K, A, I, J+1, DESCA,
     $                    WORK( IPW ), IV, JV+1, DESCW )
            CALL PSLASET( 'Lower', JB, N-K, ZERO, ONE, WORK( IPW ), IV,
     $                    JV+1, DESCW )
*
*           Zero out the strict+1 upper triangular part of A.
*
            CALL PSLASET( 'Upper', JB, N-K-1, ZERO, ZERO, A, I, J+2,
     $                    DESCA )
*
*           Apply block Householder transformation from Left.
*
            CALL PSLARFB( 'Left', 'No transpose', 'Forward',
     $                    'Columnwise', M-K+1, N-K+1, JB, WORK( IPV ),
     $                    IV, JV, DESCV, WORK( IPTQ ), A, I, J, DESCA,
     $                    WORK( IPWK ) )
*
*           Apply block Householder transformation from Right.
*
            CALL PSLARFB( 'Right', 'Transpose', 'Forward', 'Rowwise',
     $                    M-K+1, N-K, JB, WORK( IPW ), IV, JV+1, DESCW,
     $                    WORK( IPTP ), A, I, J+1, DESCA, WORK( IPWK ) )
*
            DESCV( M_ ) = DESCV( M_ ) + NB
            DESCV( RSRC_ ) = MOD( DESCV( RSRC_ ) + NPROW - 1, NPROW )
            DESCV( CSRC_ ) = MOD( DESCV( CSRC_ ) + NPCOL - 1, NPCOL )
            DESCW( N_ ) = DESCW( N_ ) + NB
            DESCW( RSRC_ ) = DESCV( RSRC_ )
            DESCW( CSRC_ ) = DESCV( CSRC_ )
*
   20    CONTINUE
*
*        Handle first block separately
*
         JB = MIN( N, NB - IOFF )
         IV = IOFF + 1
         JV = IOFF + 1
*
*        Compute upper triangular matrix TQ from TAUQ.
*
         CALL PSLARFT( 'Forward', 'Columnwise', M, JB, A, IA, JA, DESCA,
     $                 TAUQ, WORK( IPTQ ), WORK( IPWK ) )
*
*        Copy Householder vectors into workspace.
*
         CALL PSLACPY( 'Lower', M, JB, A, IA, JA, DESCA, WORK( IPV ),
     $                 IV, JV, DESCV )
         CALL PSLASET( 'Upper', M, JB, ZERO, ONE, WORK( IPV ), IV, JV,
     $                 DESCV )
*
*        Zero out the strict lower triangular part of A.
*
         CALL PSLASET( 'Lower', M-1, JB, ZERO, ZERO, A, IA+1, JA,
     $                 DESCA )
*
*        Compute upper triangular matrix TP from TAUP.
*
         CALL PSLARFT( 'Forward', 'Rowwise', N-1, JB, A, IA, JA+1,
     $                 DESCA, TAUP, WORK( IPTP ), WORK( IPWK ) )
*
*        Copy Householder vectors into workspace.
*
         CALL PSLACPY( 'Upper', JB, N-1, A, IA, JA+1, DESCA,
     $                 WORK( IPW ), IV, JV+1, DESCW )
         CALL PSLASET( 'Lower', JB, N-1, ZERO, ONE, WORK( IPW ), IV,
     $                 JV+1, DESCW )
*
*        Zero out the strict+1 upper triangular part of A.
*
         CALL PSLASET( 'Upper', JB, N-2, ZERO, ZERO, A, IA, JA+2,
     $                 DESCA )
*
*        Apply block Householder transformation from left.
*
         CALL PSLARFB( 'Left', 'No transpose', 'Forward', 'Columnwise',
     $                 M, N, JB, WORK( IPV ), IV, JV, DESCV,
     $                 WORK( IPTQ ), A, IA, JA, DESCA, WORK( IPWK ) )
*
*        Apply block Householder transformation from right.
*
         CALL PSLARFB( 'Right', 'Transpose', 'Forward', 'Rowwise', M,
     $                 N-1, JB, WORK( IPW ), IV, JV+1, DESCW,
     $                 WORK( IPTP ), A, IA, JA+1, DESCA, WORK( IPWK ) )
*
      ELSE
*
         CALL DESCSET( DESCD, IA+MN-1, 1, DESCA( MB_ ), 1,
     $                 DESCA( RSRC_ ), MYCOL, DESCA( CTXT_ ),
     $                 DESCA( LLD_ ) )
         CALL DESCSET( DESCE, 1, JA+MN-2, 1, DESCA( NB_ ), MYROW,
     $                 DESCA( CSRC_ ), DESCA( CTXT_ ), 1 )
*
         DO 30 J = 0, MN-1
            D1 = ZERO
            E1 = ZERO
            D2 = ZERO
            E2 = ZERO
            CALL PSELGET( ' ', ' ', D2, D, IA+J, 1, DESCD )
            CALL PSELGET( 'Rowwise', ' ', D1, A, IA+J, JA+J, DESCA )
            IF( J.LT.(MN-1) ) THEN
               CALL PSELGET( ' ', ' ', E2, E, 1, JA+J, DESCE )
               CALL PSELGET( 'Columnwise', ' ', E1, A, IA+J+1, JA+J,
     $                       DESCA )
            END IF
*
            IF( ( ABS( D1 - D2 ).GT.( ABS( D2 ) * ADDBND ) ) .OR.
     $          ( ABS( E1 - E2 ).GT.( ABS( E2 ) * ADDBND ) ) )
     $         INFO = INFO + 1
   30    CONTINUE
*
         DO 40 I = IL, IA+NB-IOFF, -NB
            JB = MIN( IA+M-I, NB )
            J  = JA + I - IA
            K  = J - JA + 1
*
*           Compute upper triangular matrix TQ from TAUQ.
*
            CALL PSLARFT( 'Forward', 'Columnwise', M-K, JB, A, I+1, J,
     $                    DESCA, TAUQ, WORK( IPTQ ), WORK( IPWK ) )
*
*           Copy Householder vectors into workspace.
*
            CALL PSLACPY( 'Lower', M-K, JB, A, I+1, J, DESCA,
     $                    WORK( IPV ), IV+1, JV, DESCV )
            CALL PSLASET( 'Upper', M-K, JB, ZERO, ONE, WORK( IPV ),
     $                    IV+1, JV, DESCV )
*
*           Zero out the strict lower triangular part of A.
*
            CALL PSLASET( 'Lower', M-K-1, JB, ZERO, ZERO, A, I+2, J,
     $                    DESCA )
*
*           Compute upper triangular matrix TP from TAUP.
*
            CALL PSLARFT( 'Forward', 'Rowwise', N-K+1, JB, A, I, J,
     $                    DESCA, TAUP, WORK( IPTP ), WORK( IPWK ) )
*
*           Copy Householder vectors into workspace.
*
            CALL PSLACPY( 'Upper', JB, N-K+1, A, I, J, DESCA,
     $                    WORK( IPW ), IV, JV, DESCW )
            CALL PSLASET( 'Lower', JB, N-K+1, ZERO, ONE, WORK( IPW ),
     $                    IV, JV, DESCW )
*
*           Zero out the strict+1 upper triangular part of A.
*
            CALL PSLASET( 'Upper', JB, N-K, ZERO, ZERO, A, I, J+1,
     $                    DESCA )
*
*           Apply block Householder transformation from Left.
*
            CALL PSLARFB( 'Left', 'No transpose', 'Forward',
     $                    'Columnwise', M-K, N-K+1, JB, WORK( IPV ),
     $                    IV+1, JV, DESCV, WORK( IPTQ ), A, I+1, J,
     $                    DESCA, WORK( IPWK ) )
*
*           Apply block Householder transformation from Right.
*
            CALL PSLARFB( 'Right', 'Transpose', 'Forward', 'Rowwise',
     $                    M-K+1, N-K+1, JB, WORK( IPW ), IV, JV, DESCW,
     $                    WORK( IPTP ), A, I, J, DESCA, WORK( IPWK ) )
*
            DESCV( M_ ) = DESCV( M_ ) + NB
            DESCV( RSRC_ ) = MOD( DESCV( RSRC_ ) + NPROW - 1, NPROW )
            DESCV( CSRC_ ) = MOD( DESCV( CSRC_ ) + NPCOL - 1, NPCOL )
            DESCW( N_ ) = DESCW( N_ ) + NB
            DESCW( RSRC_ ) = DESCV( RSRC_ )
            DESCW( CSRC_ ) = DESCV( CSRC_ )
*
   40    CONTINUE
*
*        Handle first block separately
*
         JB = MIN( M, NB - IOFF )
         IV = IOFF + 1
         JV = IOFF + 1
*
*        Compute upper triangular matrix TQ from TAUQ.
*
         CALL PSLARFT( 'Forward', 'Columnwise', M-1, JB, A, IA+1, JA,
     $                 DESCA, TAUQ, WORK( IPTQ ), WORK( IPWK ) )
*
*        Copy Householder vectors into workspace.
*
         CALL PSLACPY( 'Lower', M-1, JB, A, IA+1, JA, DESCA,
     $                 WORK( IPV ), IV+1, JV, DESCV )
         CALL PSLASET( 'Upper', M-1, JB, ZERO, ONE, WORK( IPV ), IV+1,
     $                 JV, DESCV )
*
*        Zero out the strict lower triangular part of A.
*
         CALL PSLASET( 'Lower', M-2, JB, ZERO, ZERO, A, IA+2, JA,
     $                 DESCA )
*
*        Compute upper triangular matrix TP from TAUP.
*
         CALL PSLARFT( 'Forward', 'Rowwise', N, JB, A, IA, JA, DESCA,
     $                 TAUP, WORK( IPTP ), WORK( IPWK ) )
*
*        Copy Householder vectors into workspace.
*
         CALL PSLACPY( 'Upper', JB, N, A, IA, JA, DESCA, WORK( IPW ),
     $                 IV, JV, DESCW )
         CALL PSLASET( 'Lower', JB, N, ZERO, ONE, WORK( IPW ), IV, JV,
     $                 DESCW )
*
*        Zero out the strict+1 upper triangular part of A.
*
         CALL PSLASET( 'Upper', JB, N-1, ZERO, ZERO, A, IA, JA+1,
     $                 DESCA )
*
*        Apply block Householder transformation from left
*
         CALL PSLARFB( 'Left', 'No transpose', 'Forward', 'Columnwise',
     $                 M-1, N, JB, WORK( IPV ), IV+1, JV, DESCV,
     $                 WORK( IPTQ ), A, IA+1, JA, DESCA, WORK( IPWK ) )
*
*        Apply block Householder transformation from right
*
         CALL PSLARFB( 'Right', 'Transpose', 'Forward', 'Rowwise', M, N,
     $                 JB, WORK( IPW ), IV, JV, DESCW, WORK( IPTP ),
     $                 A, IA, JA, DESCA, WORK( IPWK ) )
      END IF
*
      CALL IGSUM2D( ICTXT, 'All', ' ', 1, 1, INFO, 1, -1, 0 )
*
      RETURN
*
*     End of PSGEBDRV
*
      END