1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
|
SUBROUTINE PZGET22( TRANSA, TRANSE, TRANSW, N, A, DESCA, E, DESCE,
$ W, WORK, DESCW, RWORK, RESULT )
*
* -- ScaLAPACK testing routine (version 1.7) --
* University of Tennessee, Knoxville, Oak Ridge National Laboratory,
* and University of California, Berkeley.
* August 14, 2001
*
* .. Scalar Arguments ..
CHARACTER TRANSA, TRANSE, TRANSW
INTEGER N
* ..
* .. Array Arguments ..
INTEGER DESCA( * ), DESCE( * ), DESCW( * )
DOUBLE PRECISION RESULT( 2 ), RWORK( * )
COMPLEX*16 A( * ), E( * ), W( * ), WORK( * )
* ..
*
* Purpose
* =======
*
* PZGET22 does an eigenvector check.
*
* The basic test is:
*
* RESULT(1) = | A E - E W | / ( |A| |E| ulp )
*
* using the 1-norm. It also tests the normalization of E:
*
* RESULT(2) = max | m-norm(E(j)) - 1 | / ( n ulp )
* j
*
* where E(j) is the j-th eigenvector, and m-norm is the max-norm of a
* vector. The max-norm of a complex n-vector x in this case is the
* maximum of |re(x(i)| + |im(x(i)| over i = 1, ..., n.
*
* Arguments
* ==========
*
* TRANSA (input) CHARACTER*1
* Specifies whether or not A is transposed.
* = 'N': No transpose
* = 'T': Transpose
* = 'C': Conjugate transpose
*
* TRANSE (input) CHARACTER*1
* Specifies whether or not E is transposed.
* = 'N': No transpose, eigenvectors are in columns of E
* = 'T': Transpose, eigenvectors are in rows of E
* = 'C': Conjugate transpose, eigenvectors are in rows of E
*
* TRANSW (input) CHARACTER*1
* Specifies whether or not W is transposed.
* = 'N': No transpose
* = 'T': Transpose, same as TRANSW = 'N'
* = 'C': Conjugate transpose, use -WI(j) instead of WI(j)
*
* N (input) INTEGER
* The order of the matrix A. N >= 0.
*
* A (input) COMPLEX*16 array, dimension (*)
* The matrix whose eigenvectors are in E.
*
* DESCA (input) INTEGER array, dimension(*)
*
* E (input) COMPLEX*16 array, dimension (*)
* The matrix of eigenvectors. If TRANSE = 'N', the eigenvectors
* are stored in the columns of E, if TRANSE = 'T' or 'C', the
* eigenvectors are stored in the rows of E.
*
* DESCE (input) INTEGER array, dimension(*)
*
* W (input) COMPLEX*16 array, dimension (N)
* The eigenvalues of A.
*
* WORK (workspace) COMPLEX*16 array, dimension (*)
* DESCW (input) INTEGER array, dimension(*)
*
* RWORK (workspace) DOUBLE PRECISION array, dimension (N)
*
* RESULT (output) DOUBLE PRECISION array, dimension (2)
* RESULT(1) = | A E - E W | / ( |A| |E| ulp )
* RESULT(2) = max | m-norm(E(j)) - 1 | / ( n ulp )
* j
* Further Details
* ===============
*
* Contributed by Mark Fahey, June, 2000
*
* =====================================================================
*
* .. Parameters ..
INTEGER BLOCK_CYCLIC_2D, DLEN_, DTYPE_, CTXT_, M_, N_,
$ MB_, NB_, RSRC_, CSRC_, LLD_
PARAMETER ( BLOCK_CYCLIC_2D = 1, DLEN_ = 9, DTYPE_ = 1,
$ CTXT_ = 2, M_ = 3, N_ = 4, MB_ = 5, NB_ = 6,
$ RSRC_ = 7, CSRC_ = 8, LLD_ = 9 )
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
COMPLEX*16 CZERO, CONE
PARAMETER ( CZERO = ( 0.0D+0, 0.0D+0 ),
$ CONE = ( 1.0D+0, 0.0D+0 ) )
* ..
* .. Local Scalars ..
CHARACTER NORMA, NORME
INTEGER ICOL, II, IROW, ITRNSE, ITRNSW, J, JCOL, JJ,
$ JROW, JVEC, LDA, LDE, LDW, MB, MYCOL, MYROW,
$ NB, NPCOL, NPROW, CONTXT, CA, CSRC, RA, RSRC
DOUBLE PRECISION ANORM, ENORM, ENRMAX, ENRMIN, ERRNRM, TEMP1,
$ ULP, UNFL
COMPLEX*16 CDUM, WTEMP
* ..
* .. External Functions ..
LOGICAL LSAME
DOUBLE PRECISION PDLAMCH, PZLANGE
EXTERNAL LSAME, PDLAMCH, PZLANGE
* ..
* .. External Subroutines ..
EXTERNAL BLACS_GRIDINFO, DGAMN2D, DGAMX2D, INFOG2L,
$ PZAXPY, PZGEMM, PZLASET
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, DBLE, DCONJG, DIMAG, MAX, MIN
* ..
* .. Statement Functions ..
DOUBLE PRECISION CABS1
* ..
* .. Statement Function definitions ..
CABS1( CDUM ) = ABS( DBLE( CDUM ) ) + ABS( DIMAG( CDUM ) )
* ..
* .. Executable Statements ..
*
* Initialize RESULT (in case N=0)
*
RESULT( 1 ) = ZERO
RESULT( 2 ) = ZERO
IF( N.LE.0 )
$ RETURN
*
CONTXT = DESCA( CTXT_ )
RSRC = DESCA( RSRC_ )
CSRC = DESCA( CSRC_ )
NB = DESCA( NB_ )
MB = DESCA( MB_ )
LDA = DESCA( LLD_ )
LDE = DESCE( LLD_ )
LDW = DESCW( LLD_ )
CALL BLACS_GRIDINFO( CONTXT, NPROW, NPCOL, MYROW, MYCOL )
*
UNFL = PDLAMCH( CONTXT, 'Safe minimum' )
ULP = PDLAMCH( CONTXT, 'Precision' )
*
ITRNSE = 0
ITRNSW = 0
NORMA = 'O'
NORME = 'O'
*
IF( LSAME( TRANSA, 'T' ) .OR. LSAME( TRANSA, 'C' ) ) THEN
NORMA = 'I'
END IF
*
IF( LSAME( TRANSE, 'T' ) ) THEN
ITRNSE = 1
NORME = 'I'
ELSE IF( LSAME( TRANSE, 'C' ) ) THEN
ITRNSE = 2
NORME = 'I'
END IF
*
IF( LSAME( TRANSW, 'C' ) ) THEN
ITRNSW = 1
END IF
*
* Normalization of E:
*
ENRMIN = ONE / ULP
ENRMAX = ZERO
IF( ITRNSE.EQ.0 ) THEN
DO 20 JVEC = 1, N
TEMP1 = ZERO
DO 10 J = 1, N
CALL INFOG2L( J, JVEC, DESCE, NPROW, NPCOL, MYROW, MYCOL,
$ IROW, ICOL, II, JJ )
IF( ( MYROW.EQ.II ) .AND. ( MYCOL.EQ.JJ ) ) THEN
TEMP1 = MAX( TEMP1, CABS1( E( ( ICOL-1 )*LDE+
$ IROW ) ) )
END IF
10 CONTINUE
IF( MYCOL.EQ.JJ ) THEN
CALL DGAMX2D( CONTXT, 'Col', ' ', 1, 1, TEMP1, 1, RA, CA,
$ -1, -1, -1 )
ENRMIN = MIN( ENRMIN, TEMP1 )
ENRMAX = MAX( ENRMAX, TEMP1 )
END IF
20 CONTINUE
CALL DGAMX2D( CONTXT, 'Row', ' ', 1, 1, ENRMAX, 1, RA, CA, -1,
$ -1, -1 )
CALL DGAMN2D( CONTXT, 'Row', ' ', 1, 1, ENRMIN, 1, RA, CA, -1,
$ -1, -1 )
ELSE
DO 40 J = 1, N
TEMP1 = ZERO
DO 30 JVEC = 1, N
CALL INFOG2L( J, JVEC, DESCE, NPROW, NPCOL, MYROW, MYCOL,
$ IROW, ICOL, II, JJ )
IF( ( MYROW.EQ.II ) .AND. ( MYCOL.EQ.JJ ) ) THEN
TEMP1 = MAX( TEMP1, CABS1( E( ( ICOL-1 )*LDE+
$ IROW ) ) )
END IF
30 CONTINUE
IF( MYROW.EQ.II ) THEN
CALL DGAMX2D( CONTXT, 'Row', ' ', 1, 1, TEMP1, 1, RA, CA,
$ -1, -1, -1 )
ENRMIN = MIN( ENRMIN, TEMP1 )
ENRMAX = MAX( ENRMAX, TEMP1 )
END IF
40 CONTINUE
CALL DGAMX2D( CONTXT, 'Row', ' ', 1, 1, ENRMAX, 1, RA, CA, -1,
$ -1, -1 )
CALL DGAMN2D( CONTXT, 'Row', ' ', 1, 1, ENRMIN, 1, RA, CA, -1,
$ -1, -1 )
END IF
*
* Norm of A:
*
ANORM = MAX( PZLANGE( NORMA, N, N, A, 1, 1, DESCA, RWORK ), UNFL )
*
* Norm of E:
*
ENORM = MAX( PZLANGE( NORME, N, N, E, 1, 1, DESCE, RWORK ), ULP )
*
* Norm of error:
*
* Error = AE - EW
*
CALL PZLASET( 'Full', N, N, CZERO, CZERO, WORK, 1, 1, DESCW )
*
DO 60 JCOL = 1, N
IF( ITRNSW.EQ.0 ) THEN
WTEMP = W( JCOL )
ELSE
WTEMP = DCONJG( W( JCOL ) )
END IF
*
IF( ITRNSE.EQ.0 ) THEN
CALL PZAXPY( N, WTEMP, E, 1, JCOL, DESCE, 1, WORK, 1, JCOL,
$ DESCW, 1 )
ELSE IF( ITRNSE.EQ.1 ) THEN
CALL PZAXPY( N, WTEMP, E, JCOL, 1, DESCE, N, WORK, 1, JCOL,
$ DESCW, 1 )
ELSE
CALL PZAXPY( N, DCONJG( WTEMP ), E, JCOL, 1, DESCE, N, WORK,
$ 1, JCOL, DESCW, 1 )
DO 50 JROW = 1, N
CALL INFOG2L( JROW, JCOL, DESCW, NPROW, NPCOL, MYROW,
$ MYCOL, IROW, ICOL, II, JJ )
IF( ( MYROW.EQ.II ) .AND. ( MYCOL.EQ.JJ ) ) THEN
WORK( ( JCOL-1 )*LDW+JROW )
$ = DCONJG( WORK( ( JCOL-1 )*LDW+JROW ) )
END IF
50 CONTINUE
END IF
60 CONTINUE
*
CALL PZGEMM( TRANSA, TRANSE, N, N, N, CONE, A, 1, 1, DESCA, E, 1,
$ 1, DESCE, -CONE, WORK, 1, 1, DESCW )
*
ERRNRM = PZLANGE( 'One', N, N, WORK, 1, 1, DESCW, RWORK ) / ENORM
*
* Compute RESULT(1) (avoiding under/overflow)
*
IF( ANORM.GT.ERRNRM ) THEN
RESULT( 1 ) = ( ERRNRM / ANORM ) / ULP
ELSE
IF( ANORM.LT.ONE ) THEN
RESULT( 1 ) = ( MIN( ERRNRM, ANORM ) / ANORM ) / ULP
ELSE
RESULT( 1 ) = MIN( ERRNRM / ANORM, ONE ) / ULP
END IF
END IF
*
* Compute RESULT(2) : the normalization error in E.
*
RESULT( 2 ) = MAX( ABS( ENRMAX-ONE ), ABS( ENRMIN-ONE ) ) /
$ ( DBLE( N )*ULP )
*
RETURN
*
* End of PZGET22
*
END
|