1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
|
SUBROUTINE PCGETRRV( M, N, A, IA, JA, DESCA, IPIV, WORK )
*
* -- ScaLAPACK routine (version 1.7) --
* University of Tennessee, Knoxville, Oak Ridge National Laboratory,
* and University of California, Berkeley.
* May 28, 2001
*
* .. Scalar Arguments ..
INTEGER IA, JA, M, N
* ..
* .. Array Arguments ..
INTEGER DESCA( * ), IPIV( * )
COMPLEX A( * ), WORK( * )
* ..
*
* Purpose
* =======
*
* PCGETRRV reforms sub( A ) = A(IA:IA+M-1,JA:JA+N-1) from the
* triangular matrices L and U returned by PCGETRF. It multiplies
* an upper triangular matrix stored in the upper triangle of sub( A )
* times the unit lower triangular matrix stored in the lower triangle.
* To accomplish this, the routine basically performs the PCGETRF
* routine in reverse.
*
* It computes L*U first, and then apply P: P*L*U => sub( A ). In the
* J-th loop, the block column (or column panel), which has the lower
* triangular unit matrix L is multiplied with the block row (or row
* panel), which contains the upper triangular matrix U.
*
* ( L1 ) ( 0 0 ) ( L1*U1 L1*U2 )
* A` = L * U + A` = ( ) * (U1 U2) + ( ) = ( )
* ( L2 ) ( 0 A`) ( L2*U1 L2*U2+A` )
*
* where L1 is a lower unit triangular matrix and U1 is an upper
* triangular matrix.
*
* Notes
* =====
*
* Each global data object is described by an associated description
* vector. This vector stores the information required to establish
* the mapping between an object element and its corresponding process
* and memory location.
*
* Let A be a generic term for any 2D block cyclicly distributed array.
* Such a global array has an associated description vector DESCA.
* In the following comments, the character _ should be read as
* "of the global array".
*
* NOTATION STORED IN EXPLANATION
* --------------- -------------- --------------------------------------
* DTYPE_A(global) DESCA( DTYPE_ )The descriptor type. In this case,
* DTYPE_A = 1.
* CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
* the BLACS process grid A is distribu-
* ted over. The context itself is glo-
* bal, but the handle (the integer
* value) may vary.
* M_A (global) DESCA( M_ ) The number of rows in the global
* array A.
* N_A (global) DESCA( N_ ) The number of columns in the global
* array A.
* MB_A (global) DESCA( MB_ ) The blocking factor used to distribute
* the rows of the array.
* NB_A (global) DESCA( NB_ ) The blocking factor used to distribute
* the columns of the array.
* RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
* row of the array A is distributed.
* CSRC_A (global) DESCA( CSRC_ ) The process column over which the
* first column of the array A is
* distributed.
* LLD_A (local) DESCA( LLD_ ) The leading dimension of the local
* array. LLD_A >= MAX(1,LOCr(M_A)).
*
* Let K be the number of rows or columns of a distributed matrix,
* and assume that its process grid has dimension p x q.
* LOCr( K ) denotes the number of elements of K that a process
* would receive if K were distributed over the p processes of its
* process column.
* Similarly, LOCc( K ) denotes the number of elements of K that a
* process would receive if K were distributed over the q processes of
* its process row.
* The values of LOCr() and LOCc() may be determined via a call to the
* ScaLAPACK tool function, NUMROC:
* LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
* LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).
* An upper bound for these quantities may be computed by:
* LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
* LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A
*
* Arguments
* =========
*
* M (global input) INTEGER
* The number of rows to be operated on, i.e. the number of rows
* of the distributed submatrix sub( A ). M >= 0.
*
* N (global input) INTEGER
* The number of columns to be operated on, i.e. the number of
* columns of the distributed submatrix sub( A ). N >= 0.
*
* A (local input/local output) COMPLEX pointer into the
* local memory to an array of dimension (LLD_A, LOCc(JA+N-1)).
* On entry, the local pieces of the distributed matrix sub( A )
* contains the the factors L and U from the factorization
* sub( A ) = P*L*U; the unit diagonal elements of L are not
* stored. On exit, the original distributed matrix sub( A )
* is restored.
*
* IA (global input) INTEGER
* The row index in the global array A indicating the first
* row of sub( A ).
*
* JA (global input) INTEGER
* The column index in the global array A indicating the
* first column of sub( A ).
*
* DESCA (global and local input) INTEGER array of dimension DLEN_.
* The array descriptor for the distributed matrix A.
*
* IPIV (local input) INTEGER array, dimension ( LOCr(M_A)+MB_A )
* This array contains the pivoting information.
* IPIV(i) -> The global row local row i was swapped with.
* This array is tied to the distributed matrix A.
*
* WORK (local workspace) COMPLEX array of dimension (LWORK)
* LWORK >= MpA0 * NB_A + NqA0 * MB_A, where
*
* IROFFA = MOD( IA-1, MB_A ), ICOFFA = MOD( JA-1, NB_A ),
* IAROW = INDXG2P( IA, MB_A, MYROW, RSRC_A, NPROW ),
* IACOL = INDXG2P( JA, NB_A, MYCOL, CSRC_A, NPCOL ),
* MpA0 = NUMROC( M+IROFFA, MB_A, MYROW, IAROW, NPROW ),
* NqA0 = NUMROC( N+ICOFFA, NB_A, MYCOL, IACOL, NPCOL ),
*
* WORK is used to store a block of columns of L, and a block of
* rows of U. INDXG2P and NUMROC are ScaLAPACK tool functions;
* MYROW, MYCOL, NPROW and NPCOL can be determined by calling
* the subroutine BLACS_GRIDINFO.
*
* =====================================================================
*
* .. Parameters ..
INTEGER BLOCK_CYCLIC_2D, CSRC_, CTXT_, DLEN_, DTYPE_,
$ LLD_, MB_, M_, NB_, N_, RSRC_
PARAMETER ( BLOCK_CYCLIC_2D = 1, DLEN_ = 9, DTYPE_ = 1,
$ CTXT_ = 2, M_ = 3, N_ = 4, MB_ = 5, NB_ = 6,
$ RSRC_ = 7, CSRC_ = 8, LLD_ = 9 )
COMPLEX ONE, ZERO
PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 )
* ..
* .. Local Scalars ..
CHARACTER COLBTOP, ROWBTOP
INTEGER IACOL, IAROW, ICTXT, IL, IPL, IPU, IROFF, J,
$ JB, JL, JN, MN, MP, MYCOL, MYROW, NPCOL, NPROW
* .. Local Arrays ..
INTEGER DESCIP( DLEN_ ), DESCL( DLEN_ ),
$ DESCU( DLEN_ ), IDUM( 1 )
* ..
* .. External Subroutines ..
EXTERNAL BLACS_GRIDINFO, DESCSET, PCGEMM, PCLACPY,
$ PCLAPIV, PCLASET, PB_TOPGET, PB_TOPSET
* ..
* .. External Functions ..
INTEGER ICEIL, INDXG2P, NUMROC
EXTERNAL ICEIL, INDXG2P, NUMROC
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX, MIN, MOD
* ..
* .. Executable Statements ..
*
* Get grid parameters.
*
ICTXT = DESCA( CTXT_ )
CALL BLACS_GRIDINFO( ICTXT, NPROW, NPCOL, MYROW, MYCOL )
*
IROFF = MOD( IA-1, DESCA( MB_ ) )
IAROW = INDXG2P( IA, DESCA( MB_ ), MYROW, DESCA( RSRC_ ), NPROW )
MP = NUMROC( M+IROFF, DESCA( MB_ ), MYROW, IAROW, NPROW )
IPL = 1
IPU = IPL + MP * DESCA( NB_ )
CALL PB_TOPGET( ICTXT, 'Broadcast', 'Rowwise', ROWBTOP )
CALL PB_TOPGET( ICTXT, 'Broadcast', 'Columnwise', COLBTOP )
CALL PB_TOPSET( ICTXT, 'Broadcast', 'Rowwise', 'S-ring' )
CALL PB_TOPSET( ICTXT, 'Broadcast', 'Columnwise', ' ' )
*
* Define array descriptors for L and U
*
MN = MIN( M, N )
IL = MAX( ( ( IA+MN-2 ) / DESCA( MB_ ) ) * DESCA( MB_ ) + 1, IA )
JL = MAX( ( ( JA+MN-2 ) / DESCA( NB_ ) ) * DESCA( NB_ ) + 1, JA )
JN = MIN( ICEIL( JA, DESCA( NB_ ) )*DESCA( NB_ ), JA+MN-1 )
IAROW = INDXG2P( IL, DESCA( MB_ ), MYROW, DESCA( RSRC_ ), NPROW )
IACOL = INDXG2P( JL, DESCA( NB_ ), MYCOL, DESCA( CSRC_ ), NPCOL )
*
CALL DESCSET( DESCL, IA+M-IL, DESCA( NB_ ), DESCA( MB_ ),
$ DESCA( NB_ ), IAROW, IACOL, ICTXT, MAX( 1, MP ) )
*
CALL DESCSET( DESCU, DESCA( MB_ ), JA+N-JL, DESCA( MB_ ),
$ DESCA( NB_ ), IAROW, IACOL, ICTXT, DESCA( MB_ ) )
*
CALL DESCSET( DESCIP, DESCA( M_ ) + DESCA( MB_ )*NPROW, 1,
$ DESCA( MB_ ), 1, DESCA( RSRC_ ), MYCOL, ICTXT,
$ NUMROC( DESCA( M_ ), DESCA( MB_ ), MYROW,
$ DESCA( RSRC_ ), NPROW ) + DESCA( MB_ ) )
*
*
DO 10 J = JL, JN+1, -DESCA( NB_ )
*
JB = MIN( JA+MN-J, DESCA( NB_ ) )
*
* Copy unit lower triangular part of sub( A ) into WORK
*
CALL PCLACPY( 'Lower', M-IL+IA, JB, A, IL, J, DESCA,
$ WORK( IPL ), 1, 1, DESCL )
CALL PCLASET( 'Upper', M-IL+IA, JB, ZERO, ONE, WORK( IPL ),
$ 1, 1, DESCL )
*
* Copy upper triangular part of sub( A ) into WORK(IPU)
*
CALL PCLACPY( 'Upper', JB, JA+N-J, A, IL, J, DESCA,
$ WORK( IPU ), 1, 1, DESCU )
CALL PCLASET( 'Lower', JB-1, JA+N-J, ZERO, ZERO,
$ WORK( IPU ), 2, 1, DESCU )
*
* Zero the strict lower triangular piece of the current block.
*
CALL PCLASET( 'Lower', IA+M-IL-1, JB, ZERO, ZERO, A, IL+1, J,
$ DESCA )
*
* Zero the upper triangular piece of the current block.
*
CALL PCLASET( 'Upper', JB, JA+N-J, ZERO, ZERO, A, IL, J,
$ DESCA )
*
* Update the matrix sub( A ).
*
CALL PCGEMM( 'No transpose', 'No transpose', IA+M-IL,
$ JA+N-J, JB, ONE, WORK( IPL ), 1, 1, DESCL,
$ WORK( IPU ), 1, 1, DESCU, ONE, A, IL, J, DESCA )
*
IL = IL - DESCA( MB_ )
DESCL( M_ ) = DESCL( M_ ) + DESCL( MB_ )
DESCL( RSRC_ ) = MOD( DESCL( RSRC_ ) + NPROW - 1, NPROW )
DESCL( CSRC_ ) = MOD( DESCL( CSRC_ ) + NPCOL - 1, NPCOL )
DESCU( N_ ) = DESCU( N_ ) + DESCU( NB_ )
DESCU( RSRC_ ) = DESCL( RSRC_ )
DESCU( CSRC_ ) = DESCL( CSRC_ )
*
10 CONTINUE
*
* Handle first block separately
*
JB = MIN( JN-JA+1, DESCA( NB_ ) )
*
* Copy unit lower triangular part of sub( A ) into WORK
*
CALL PCLACPY( 'Lower', M, JB, A, IA, JA, DESCA, WORK( IPL ),
$ 1, 1, DESCL )
CALL PCLASET( 'Upper', M, JB, ZERO, ONE, WORK( IPL ), 1, 1,
$ DESCL )
*
* Copy upper triangular part of sub( A ) into WORK(IPU)
*
CALL PCLACPY( 'Upper', JB, N, A, IA, JA, DESCA, WORK( IPU ), 1,
$ 1, DESCU )
CALL PCLASET( 'Lower', JB-1, N, ZERO, ZERO, WORK( IPU ), 2, 1,
$ DESCU )
*
* Zero the strict lower triangular piece of the current block.
*
CALL PCLASET( 'Lower', M-1, JB, ZERO, ZERO, A, IA+1, JA, DESCA )
*
* Zero the upper triangular piece of the current block.
*
CALL PCLASET( 'Upper', JB, N, ZERO, ZERO, A, IA, JA, DESCA )
*
* Update the matrix sub( A ).
*
CALL PCGEMM( 'No transpose', 'No transpose', M, N, JB, ONE,
$ WORK( IPL ), 1, 1, DESCL, WORK( IPU ), 1, 1,
$ DESCU, ONE, A, IA, JA, DESCA )
*
* Apply pivots so that sub( A ) = P*L*U
*
CALL PCLAPIV( 'Backward', 'Row', 'Col', MIN( M, N ), N, A, IA, JA,
$ DESCA, IPIV, IA, 1, DESCIP, IDUM )
*
CALL PB_TOPSET( ICTXT, 'Broadcast', 'Rowwise', ROWBTOP )
CALL PB_TOPSET( ICTXT, 'Broadcast', 'Columnwise', COLBTOP )
*
RETURN
*
* End of PCGETRRV
*
END
|