File: pcgetrrv.f

package info (click to toggle)
scalapack 1.7.4-2
  • links: PTS
  • area: main
  • in suites: etch, etch-m68k
  • size: 34,004 kB
  • ctags: 30,444
  • sloc: fortran: 310,201; ansic: 64,027; makefile: 1,838; sh: 4
file content (297 lines) | stat: -rw-r--r-- 12,348 bytes parent folder | download | duplicates (12)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
      SUBROUTINE PCGETRRV( M, N, A, IA, JA, DESCA, IPIV, WORK )
*
*  -- ScaLAPACK routine (version 1.7) --
*     University of Tennessee, Knoxville, Oak Ridge National Laboratory,
*     and University of California, Berkeley.
*     May 28, 2001
*
*     .. Scalar Arguments ..
      INTEGER            IA, JA, M, N
*     ..
*     .. Array Arguments ..
      INTEGER            DESCA( * ), IPIV( * )
      COMPLEX            A( * ), WORK( * )
*     ..
*
*  Purpose
*  =======
*
*  PCGETRRV reforms sub( A ) = A(IA:IA+M-1,JA:JA+N-1) from the
*  triangular matrices L and U returned by PCGETRF.  It multiplies
*  an upper triangular matrix stored in the upper triangle of sub( A )
*  times the unit lower triangular matrix stored in the lower triangle.
*  To accomplish this, the routine basically performs the PCGETRF
*  routine in reverse.
*
*  It computes L*U first, and then apply P: P*L*U => sub( A ). In the
*  J-th loop, the block column (or column panel), which has the lower
*  triangular unit matrix L is multiplied with the block row (or row
*  panel), which contains the upper triangular matrix U.
*
*                     ( L1 )             ( 0  0 )   ( L1*U1   L1*U2   )
*   A` = L * U + A` = (    ) * (U1 U2) + (      ) = (                 )
*                     ( L2 )             ( 0  A`)   ( L2*U1  L2*U2+A` )
*
*  where L1 is a lower unit triangular matrix and U1 is an upper
*  triangular matrix.
*
*  Notes
*  =====
*
*  Each global data object is described by an associated description
*  vector.  This vector stores the information required to establish
*  the mapping between an object element and its corresponding process
*  and memory location.
*
*  Let A be a generic term for any 2D block cyclicly distributed array.
*  Such a global array has an associated description vector DESCA.
*  In the following comments, the character _ should be read as
*  "of the global array".
*
*  NOTATION        STORED IN      EXPLANATION
*  --------------- -------------- --------------------------------------
*  DTYPE_A(global) DESCA( DTYPE_ )The descriptor type.  In this case,
*                                 DTYPE_A = 1.
*  CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
*                                 the BLACS process grid A is distribu-
*                                 ted over. The context itself is glo-
*                                 bal, but the handle (the integer
*                                 value) may vary.
*  M_A    (global) DESCA( M_ )    The number of rows in the global
*                                 array A.
*  N_A    (global) DESCA( N_ )    The number of columns in the global
*                                 array A.
*  MB_A   (global) DESCA( MB_ )   The blocking factor used to distribute
*                                 the rows of the array.
*  NB_A   (global) DESCA( NB_ )   The blocking factor used to distribute
*                                 the columns of the array.
*  RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
*                                 row of the array A is distributed.
*  CSRC_A (global) DESCA( CSRC_ ) The process column over which the
*                                 first column of the array A is
*                                 distributed.
*  LLD_A  (local)  DESCA( LLD_ )  The leading dimension of the local
*                                 array.  LLD_A >= MAX(1,LOCr(M_A)).
*
*  Let K be the number of rows or columns of a distributed matrix,
*  and assume that its process grid has dimension p x q.
*  LOCr( K ) denotes the number of elements of K that a process
*  would receive if K were distributed over the p processes of its
*  process column.
*  Similarly, LOCc( K ) denotes the number of elements of K that a
*  process would receive if K were distributed over the q processes of
*  its process row.
*  The values of LOCr() and LOCc() may be determined via a call to the
*  ScaLAPACK tool function, NUMROC:
*          LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
*          LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).
*  An upper bound for these quantities may be computed by:
*          LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
*          LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A
*
*  Arguments
*  =========
*
*  M       (global input) INTEGER
*          The number of rows to be operated on, i.e. the number of rows
*          of the distributed submatrix sub( A ). M >= 0.
*
*  N       (global input) INTEGER
*          The number of columns to be operated on, i.e. the number of
*          columns of the distributed submatrix sub( A ). N >= 0.
*
*  A       (local input/local output) COMPLEX pointer into the
*          local memory to an array of dimension (LLD_A, LOCc(JA+N-1)).
*          On entry, the local pieces of the distributed matrix sub( A )
*          contains the the factors L and U from the factorization
*          sub( A ) = P*L*U; the unit diagonal elements of L are not
*          stored. On exit, the original distributed matrix sub( A )
*          is restored.
*
*  IA      (global input) INTEGER
*          The row index in the global array A indicating the first
*          row of sub( A ).
*
*  JA      (global input) INTEGER
*          The column index in the global array A indicating the
*          first column of sub( A ).
*
*  DESCA   (global and local input) INTEGER array of dimension DLEN_.
*          The array descriptor for the distributed matrix A.
*
*  IPIV    (local input) INTEGER array, dimension ( LOCr(M_A)+MB_A )
*          This array contains the pivoting information.
*          IPIV(i) -> The global row local row i was swapped with.
*          This array is tied to the distributed matrix A.
*
*  WORK    (local workspace) COMPLEX array of dimension (LWORK)
*          LWORK >= MpA0 * NB_A + NqA0 * MB_A, where
*
*          IROFFA = MOD( IA-1, MB_A ), ICOFFA = MOD( JA-1, NB_A ),
*          IAROW = INDXG2P( IA, MB_A, MYROW, RSRC_A, NPROW ),
*          IACOL = INDXG2P( JA, NB_A, MYCOL, CSRC_A, NPCOL ),
*          MpA0 = NUMROC( M+IROFFA, MB_A, MYROW, IAROW, NPROW ),
*          NqA0 = NUMROC( N+ICOFFA, NB_A, MYCOL, IACOL, NPCOL ),
*
*          WORK is used to store a block of columns of L, and a block of
*          rows of U. INDXG2P and NUMROC are ScaLAPACK tool functions;
*          MYROW, MYCOL, NPROW and NPCOL can be determined by calling
*          the subroutine BLACS_GRIDINFO.
*
*  =====================================================================
*
*     .. Parameters ..
      INTEGER            BLOCK_CYCLIC_2D, CSRC_, CTXT_, DLEN_, DTYPE_,
     $                   LLD_, MB_, M_, NB_, N_, RSRC_
      PARAMETER          ( BLOCK_CYCLIC_2D = 1, DLEN_ = 9, DTYPE_ = 1,
     $                     CTXT_ = 2, M_ = 3, N_ = 4, MB_ = 5, NB_ = 6,
     $                     RSRC_ = 7, CSRC_ = 8, LLD_ = 9 )
      COMPLEX            ONE, ZERO
      PARAMETER          ( ONE = 1.0E+0, ZERO = 0.0E+0 )
*     ..
*     .. Local Scalars ..
      CHARACTER          COLBTOP, ROWBTOP
      INTEGER            IACOL, IAROW, ICTXT, IL, IPL, IPU, IROFF, J,
     $                   JB, JL, JN, MN, MP, MYCOL, MYROW, NPCOL, NPROW
*     .. Local Arrays ..
      INTEGER            DESCIP( DLEN_ ), DESCL( DLEN_ ),
     $                   DESCU( DLEN_ ), IDUM( 1 )
*     ..
*     .. External Subroutines ..
      EXTERNAL           BLACS_GRIDINFO, DESCSET, PCGEMM, PCLACPY,
     $                   PCLAPIV, PCLASET, PB_TOPGET, PB_TOPSET
*     ..
*     .. External Functions ..
      INTEGER            ICEIL, INDXG2P, NUMROC
      EXTERNAL           ICEIL, INDXG2P, NUMROC
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAX, MIN, MOD
*     ..
*     .. Executable Statements ..
*
*     Get grid parameters.
*
      ICTXT = DESCA( CTXT_ )
      CALL BLACS_GRIDINFO( ICTXT, NPROW, NPCOL, MYROW, MYCOL )
*
      IROFF = MOD( IA-1, DESCA( MB_ ) )
      IAROW = INDXG2P( IA, DESCA( MB_ ), MYROW, DESCA( RSRC_ ), NPROW )
      MP = NUMROC( M+IROFF, DESCA( MB_ ), MYROW, IAROW, NPROW )
      IPL = 1
      IPU = IPL + MP * DESCA( NB_ )
      CALL PB_TOPGET( ICTXT, 'Broadcast', 'Rowwise', ROWBTOP )
      CALL PB_TOPGET( ICTXT, 'Broadcast', 'Columnwise', COLBTOP )
      CALL PB_TOPSET( ICTXT, 'Broadcast', 'Rowwise', 'S-ring' )
      CALL PB_TOPSET( ICTXT, 'Broadcast', 'Columnwise', ' ' )
*
*     Define array descriptors for L and U
*
      MN = MIN( M, N )
      IL = MAX( ( ( IA+MN-2 ) / DESCA( MB_ ) ) * DESCA( MB_ ) + 1, IA )
      JL = MAX( ( ( JA+MN-2 ) / DESCA( NB_ ) ) * DESCA( NB_ ) + 1, JA )
      JN = MIN( ICEIL( JA, DESCA( NB_ ) )*DESCA( NB_ ), JA+MN-1 )
      IAROW = INDXG2P( IL, DESCA( MB_ ), MYROW, DESCA( RSRC_ ), NPROW )
      IACOL = INDXG2P( JL, DESCA( NB_ ), MYCOL, DESCA( CSRC_ ), NPCOL )
*
      CALL DESCSET( DESCL, IA+M-IL, DESCA( NB_ ), DESCA( MB_ ),
     $              DESCA( NB_ ), IAROW, IACOL, ICTXT, MAX( 1, MP ) )
*
      CALL DESCSET( DESCU, DESCA( MB_ ), JA+N-JL, DESCA( MB_ ),
     $              DESCA( NB_ ), IAROW, IACOL, ICTXT, DESCA( MB_ ) )
*
      CALL DESCSET( DESCIP, DESCA( M_ ) + DESCA( MB_ )*NPROW, 1,
     $              DESCA( MB_ ), 1, DESCA( RSRC_ ), MYCOL, ICTXT,
     $              NUMROC( DESCA( M_ ), DESCA( MB_ ), MYROW,
     $                      DESCA( RSRC_ ), NPROW ) + DESCA( MB_ ) )
*
*
      DO 10 J = JL, JN+1, -DESCA( NB_ )
*
         JB = MIN( JA+MN-J, DESCA( NB_ ) )
*
*        Copy unit lower triangular part of sub( A ) into WORK
*
         CALL PCLACPY( 'Lower', M-IL+IA, JB, A, IL, J, DESCA,
     $                 WORK( IPL ), 1, 1, DESCL )
         CALL PCLASET( 'Upper', M-IL+IA, JB, ZERO, ONE, WORK( IPL ),
     $                 1, 1, DESCL )
*
*        Copy upper triangular part of sub( A ) into WORK(IPU)
*
         CALL PCLACPY( 'Upper', JB, JA+N-J, A, IL, J, DESCA,
     $                 WORK( IPU ), 1, 1, DESCU )
         CALL PCLASET( 'Lower', JB-1, JA+N-J, ZERO, ZERO,
     $                 WORK( IPU ), 2, 1, DESCU )
*
*        Zero the strict lower triangular piece of the current block.
*
         CALL PCLASET( 'Lower', IA+M-IL-1, JB, ZERO, ZERO, A, IL+1, J,
     $                 DESCA )
*
*        Zero the upper triangular piece of the current block.
*
         CALL PCLASET( 'Upper', JB, JA+N-J, ZERO, ZERO, A, IL, J,
     $                 DESCA )
*
*        Update the matrix sub( A ).
*
         CALL PCGEMM( 'No transpose', 'No transpose', IA+M-IL,
     $                JA+N-J, JB, ONE, WORK( IPL ), 1, 1, DESCL,
     $                WORK( IPU ), 1, 1, DESCU, ONE, A, IL, J, DESCA )
*
         IL = IL - DESCA( MB_ )
         DESCL( M_ ) = DESCL( M_ ) + DESCL( MB_ )
         DESCL( RSRC_ ) = MOD( DESCL( RSRC_ ) + NPROW - 1, NPROW )
         DESCL( CSRC_ ) = MOD( DESCL( CSRC_ ) + NPCOL - 1, NPCOL )
         DESCU( N_ ) = DESCU( N_ ) + DESCU( NB_ )
         DESCU( RSRC_ ) = DESCL( RSRC_ )
         DESCU( CSRC_ ) = DESCL( CSRC_ )
*
   10 CONTINUE
*
*     Handle first block separately
*
      JB = MIN( JN-JA+1, DESCA( NB_ ) )
*
*     Copy unit lower triangular part of sub( A ) into WORK
*
      CALL PCLACPY( 'Lower', M, JB, A, IA, JA, DESCA, WORK( IPL ),
     $              1, 1, DESCL )
      CALL PCLASET( 'Upper', M, JB, ZERO, ONE, WORK( IPL ), 1, 1,
     $              DESCL )
*
*     Copy upper triangular part of sub( A ) into WORK(IPU)
*
      CALL PCLACPY( 'Upper', JB, N, A, IA, JA, DESCA, WORK( IPU ), 1,
     $              1, DESCU )
      CALL PCLASET( 'Lower', JB-1, N, ZERO, ZERO, WORK( IPU ), 2, 1,
     $              DESCU )
*
*     Zero the strict lower triangular piece of the current block.
*
      CALL PCLASET( 'Lower', M-1, JB, ZERO, ZERO, A, IA+1, JA, DESCA )
*
*     Zero the upper triangular piece of the current block.
*
      CALL PCLASET( 'Upper', JB, N, ZERO, ZERO, A, IA, JA, DESCA )
*
*     Update the matrix sub( A ).
*
      CALL PCGEMM( 'No transpose', 'No transpose', M, N, JB, ONE,
     $             WORK( IPL ), 1, 1, DESCL, WORK( IPU ), 1, 1,
     $             DESCU, ONE, A, IA, JA, DESCA )
*
*     Apply pivots so that sub( A ) = P*L*U
*
      CALL PCLAPIV( 'Backward', 'Row', 'Col', MIN( M, N ), N, A, IA, JA,
     $              DESCA, IPIV, IA, 1, DESCIP, IDUM )
*
      CALL PB_TOPSET( ICTXT, 'Broadcast', 'Rowwise', ROWBTOP )
      CALL PB_TOPSET( ICTXT, 'Broadcast', 'Columnwise', COLBTOP )
*
      RETURN
*
*     End of PCGETRRV
*
      END