File: pcqrt16.f

package info (click to toggle)
scalapack 1.7.4-2
  • links: PTS
  • area: main
  • in suites: etch, etch-m68k
  • size: 34,004 kB
  • ctags: 30,444
  • sloc: fortran: 310,201; ansic: 64,027; makefile: 1,838; sh: 4
file content (280 lines) | stat: -rw-r--r-- 10,980 bytes parent folder | download | duplicates (8)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
      SUBROUTINE PCQRT16( TRANS, M, N, NRHS, A, IA, JA, DESCA, X, IX,
     $                    JX, DESCX, B, IB, JB, DESCB, RWORK, RESID )
*
*  -- ScaLAPACK routine (version 1.7) --
*     University of Tennessee, Knoxville, Oak Ridge National Laboratory,
*     and University of California, Berkeley.
*     May 1, 1997
*
*     .. Scalar Arguments ..
      CHARACTER          TRANS
      INTEGER            IA, IB, IX, JA, JB, JX, M, N, NRHS
      REAL               RESID
*     ..
*     .. Array Arguments ..
      INTEGER            DESCA( * ), DESCB( * ), DESCX( * )
      REAL               RWORK( * )
      COMPLEX            A( * ), B( * ), X( * )
*     ..
*
*  Purpose
*  =======
*
*  PCQRT16 computes the residual for a solution of a system of linear
*  equations  sub( A )*sub( X ) = B  or  sub( A' )*sub( X ) = B:
*     RESID = norm(B - sub( A )*sub( X ) ) /
*             ( max(m,n) * norm(sub( A ) ) * norm(sub( X ) ) * EPS ),
*  where EPS is the machine epsilon, sub( A ) denotes
*  A(IA:IA+N-1,JA,JA+N-1), and sub( X ) denotes
*  X(IX:IX+N-1, JX:JX+NRHS-1).
*
*  Notes
*  =====
*
*  Each global data object is described by an associated description
*  vector.  This vector stores the information required to establish
*  the mapping between an object element and its corresponding process
*  and memory location.
*
*  Let A be a generic term for any 2D block cyclicly distributed array.
*  Such a global array has an associated description vector DESCA.
*  In the following comments, the character _ should be read as
*  "of the global array".
*
*  NOTATION        STORED IN      EXPLANATION
*  --------------- -------------- --------------------------------------
*  DTYPE_A(global) DESCA( DTYPE_ )The descriptor type.  In this case,
*                                 DTYPE_A = 1.
*  CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
*                                 the BLACS process grid A is distribu-
*                                 ted over. The context itself is glo-
*                                 bal, but the handle (the integer
*                                 value) may vary.
*  M_A    (global) DESCA( M_ )    The number of rows in the global
*                                 array A.
*  N_A    (global) DESCA( N_ )    The number of columns in the global
*                                 array A.
*  MB_A   (global) DESCA( MB_ )   The blocking factor used to distribute
*                                 the rows of the array.
*  NB_A   (global) DESCA( NB_ )   The blocking factor used to distribute
*                                 the columns of the array.
*  RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
*                                 row of the array A is distributed.
*  CSRC_A (global) DESCA( CSRC_ ) The process column over which the
*                                 first column of the array A is
*                                 distributed.
*  LLD_A  (local)  DESCA( LLD_ )  The leading dimension of the local
*                                 array.  LLD_A >= MAX(1,LOCr(M_A)).
*
*  Let K be the number of rows or columns of a distributed matrix,
*  and assume that its process grid has dimension p x q.
*  LOCr( K ) denotes the number of elements of K that a process
*  would receive if K were distributed over the p processes of its
*  process column.
*  Similarly, LOCc( K ) denotes the number of elements of K that a
*  process would receive if K were distributed over the q processes of
*  its process row.
*  The values of LOCr() and LOCc() may be determined via a call to the
*  ScaLAPACK tool function, NUMROC:
*          LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
*          LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).
*  An upper bound for these quantities may be computed by:
*          LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
*          LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A
*
*  Arguments
*  =========
*
*  TRANS   (global input) CHARACTER*1
*          Specifies the form of the system of equations:
*          = 'N':  sub( A )*sub( X ) = sub( B )
*          = 'T':  sub( A' )*sub( X )= sub( B ), where A' is the
*                  transpose of sub( A ).
*          = 'C':  sub( A' )*sub( X )= B, where A' is the conjugate
*                  transpose of sub( A ).
*
*  M       (global input) INTEGER
*          The number of rows to be operated on, i.e. the number of rows
*          of the distributed submatrix sub( A ). M >= 0.
*
*  N       (global input) INTEGER
*          The number of columns to be operated on, i.e. the number of
*          columns of the distributed submatrix sub( A ). N >= 0.
*
*  NRHS    (global input) INTEGER
*          The number of right hand sides, i.e., the number of columns
*          of the distributed submatrix sub( B ). NRHS >= 0.
*
*  A       (local input) COMPLEX pointer into the local
*          memory to an array of dimension (LLD_A,LOCc(JA+N-1)).
*          The original M x N matrix A.
*
*  IA      (global input) INTEGER
*          The row index in the global array A indicating the first
*          row of sub( A ).
*
*  JA      (global input) INTEGER
*          The column index in the global array A indicating the
*          first column of sub( A ).
*
*  DESCA   (global and local input) INTEGER array of dimension DLEN_.
*          The array descriptor for the distributed matrix A.
*
*  X       (local input) COMPLEX pointer into the local
*          memory to an array of dimension (LLD_X,LOCc(JX+NRHS-1)). This
*          array contains the local pieces of the computed solution
*          distributed vectors for the system of linear equations.
*
*  IX      (global input) INTEGER
*          The row index in the global array X indicating the first
*          row of sub( X ).
*
*  JX      (global input) INTEGER
*          The column index in the global array X indicating the
*          first column of sub( X ).
*
*  DESCX   (global and local input) INTEGER array of dimension DLEN_.
*          The array descriptor for the distributed matrix X.
*
*  B       (local input/local output) COMPLEX pointer into
*          the local memory to an array of dimension
*          (LLD_B,LOCc(JB+NRHS-1)).  On entry, this array contains the
*          local pieces of the distributes right hand side vectors for
*          the system of linear equations. On exit, sub( B ) is over-
*          written with the difference sub( B ) - sub( A )*sub( X ) or
*          sub( B ) - sub( A )'*sub( X ).
*
*  IB      (global input) INTEGER
*          The row index in the global array B indicating the first
*          row of sub( B ).
*
*  JB      (global input) INTEGER
*          The column index in the global array B indicating the
*          first column of sub( B ).
*
*  DESCB   (global and local input) INTEGER array of dimension DLEN_.
*          The array descriptor for the distributed matrix B.
*
*  RWORK   (local workspace) REAL array, dimension (LRWORK)
*          LWORK >= Nq0 if TRANS = 'N', and LRWORK >= Mp0 otherwise.
*
*          where
*
*          IROFFA = MOD( IA-1, MB_A ), ICOFFA = MOD( JA-1, NB_A ),
*          IAROW = INDXG2P( IA, MB_A, MYROW, RSRC_A, NPROW ),
*          IACOL = INDXG2P( JA, NB_A, MYCOL, CSRC_A, NPCOL ),
*          Mp0 = NUMROC( M+IROFFA, MB_A, MYROW, IAROW, NPROW ),
*          Nq0 = NUMROC( N+ICOFFA, NB_A, MYCOL, IACOL, NPCOL ),
*
*          INDXG2P and NUMROC are ScaLAPACK tool functions; MYROW,
*          MYCOL, NPROW and NPCOL can be determined by calling the
*          subroutine BLACS_GRIDINFO.
*
*  RESID   (global output) REAL
*          The maximum over the number of right hand sides of
*          norm( sub( B )- sub( A )*sub( X ) ) /
*          ( max(m,n) * norm( sub( A ) ) * norm( sub( X ) ) * EPS ).
*
*  =====================================================================
*
*     .. Parameters ..
      INTEGER            BLOCK_CYCLIC_2D, CSRC_, CTXT_, DLEN_, DTYPE_,
     $                   LLD_, MB_, M_, NB_, N_, RSRC_
      PARAMETER          ( BLOCK_CYCLIC_2D = 1, DLEN_ = 9, DTYPE_ = 1,
     $                     CTXT_ = 2, M_ = 3, N_ = 4, MB_ = 5, NB_ = 6,
     $                     RSRC_ = 7, CSRC_ = 8, LLD_ = 9 )
      REAL               ZERO, ONE
      PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0 )
      COMPLEX            CONE
      PARAMETER          ( CONE = ( 1.0E+0, 0.0E+0 ) )
*     ..
*     .. Local Scalars ..
      INTEGER            ICTXT, IDUMM, J, MYCOL, MYROW, N1, N2, NPCOL,
     $                   NPROW
      REAL               ANORM, BNORM, EPS, XNORM
*     ..
*     .. Local Arrays ..
      REAL               TEMP( 2 )
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      REAL               PCLANGE, PSLAMCH
      EXTERNAL           LSAME, PCLANGE, PSLAMCH
*     ..
*     .. External Subroutines ..
      EXTERNAL           BLACS_GRIDINFO, PCGEMM, PSCASUM,
     $                   SGAMX2D
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAX
*     ..
*     .. Executable Statements ..
*
*     Get grid parameters
*
      ICTXT = DESCA( CTXT_ )
      CALL BLACS_GRIDINFO( ICTXT, NPROW, NPCOL, MYROW, MYCOL )
*
*     Quick exit if M = 0 or N = 0 or NRHS = 0
*
      IF( M.LE.0 .OR. N.LE.0 .OR. NRHS.EQ.0 ) THEN
         RESID = ZERO
         RETURN
      END IF
*
      IF( LSAME( TRANS, 'T' ) .OR. LSAME( TRANS, 'C' ) ) THEN
         ANORM = PCLANGE( 'I', M, N, A, IA, JA, DESCA, RWORK )
         N1 = N
         N2 = M
      ELSE
         ANORM = PCLANGE( '1', M, N, A, IA, JA, DESCA, RWORK )
         N1 = M
         N2 = N
      END IF
*
      EPS = PSLAMCH( ICTXT, 'Epsilon' )
*
*     Compute  B - sub( A )*sub( X )  (or  B - sub( A' )*sub( X ) ) and
*     store in B.
*
      CALL PCGEMM( TRANS, 'No transpose', N1, NRHS, N2, -CONE, A, IA,
     $            JA, DESCA, X, IX, JX, DESCX, CONE, B, IB, JB, DESCB )
*
*     Compute the maximum over the number of right hand sides of
*        norm( sub( B ) - sub( A )*sub( X ) ) /
*        ( max(m,n) * norm( sub( A ) ) * norm( sub( X ) ) * EPS ).
*
      RESID = ZERO
      DO 10 J = 1, NRHS
*
         CALL PSCASUM( N1, BNORM, B, IB, JB+J-1, DESCB, 1 )
         CALL PSCASUM( N2, XNORM, X, IX, JX+J-1, DESCX, 1 )
*
*        Only the process columns owning the vector operands will have
*        the correct result, the other will have zero.
*
         TEMP( 1 ) = BNORM
         TEMP( 2 ) = XNORM
         CALL SGAMX2D( ICTXT, 'All', ' ', 2, 1, TEMP, 2, IDUMM, IDUMM,
     $                 -1, -1, IDUMM )
         BNORM = TEMP( 1 )
         XNORM = TEMP( 2 )
*
*        Every processes have ANORM, BNORM and XNORM now.
*
         IF( ANORM.EQ.ZERO .AND. BNORM.EQ.ZERO ) THEN
            RESID = ZERO
         ELSE IF( ANORM.LE.ZERO .OR. XNORM.LE.ZERO ) THEN
            RESID = ONE / EPS
         ELSE
            RESID = MAX( RESID, ( ( BNORM / ANORM ) / XNORM ) /
     $              ( MAX( M, N )*EPS ) )
         END IF
*
   10 CONTINUE
*
      RETURN
*
*     End of PCQRT16
*
      END