1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
|
SUBROUTINE PZQRT16( TRANS, M, N, NRHS, A, IA, JA, DESCA, X, IX,
$ JX, DESCX, B, IB, JB, DESCB, RWORK, RESID )
*
* -- ScaLAPACK routine (version 1.7) --
* University of Tennessee, Knoxville, Oak Ridge National Laboratory,
* and University of California, Berkeley.
* May 1, 1997
*
* .. Scalar Arguments ..
CHARACTER TRANS
INTEGER IA, IB, IX, JA, JB, JX, M, N, NRHS
DOUBLE PRECISION RESID
* ..
* .. Array Arguments ..
INTEGER DESCA( * ), DESCB( * ), DESCX( * )
DOUBLE PRECISION RWORK( * )
COMPLEX*16 A( * ), B( * ), X( * )
* ..
*
* Purpose
* =======
*
* PZQRT16 computes the residual for a solution of a system of linear
* equations sub( A )*sub( X ) = B or sub( A' )*sub( X ) = B:
* RESID = norm(B - sub( A )*sub( X ) ) /
* ( max(m,n) * norm(sub( A ) ) * norm(sub( X ) ) * EPS ),
* where EPS is the machine epsilon, sub( A ) denotes
* A(IA:IA+N-1,JA,JA+N-1), and sub( X ) denotes
* X(IX:IX+N-1, JX:JX+NRHS-1).
*
* Notes
* =====
*
* Each global data object is described by an associated description
* vector. This vector stores the information required to establish
* the mapping between an object element and its corresponding process
* and memory location.
*
* Let A be a generic term for any 2D block cyclicly distributed array.
* Such a global array has an associated description vector DESCA.
* In the following comments, the character _ should be read as
* "of the global array".
*
* NOTATION STORED IN EXPLANATION
* --------------- -------------- --------------------------------------
* DTYPE_A(global) DESCA( DTYPE_ )The descriptor type. In this case,
* DTYPE_A = 1.
* CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
* the BLACS process grid A is distribu-
* ted over. The context itself is glo-
* bal, but the handle (the integer
* value) may vary.
* M_A (global) DESCA( M_ ) The number of rows in the global
* array A.
* N_A (global) DESCA( N_ ) The number of columns in the global
* array A.
* MB_A (global) DESCA( MB_ ) The blocking factor used to distribute
* the rows of the array.
* NB_A (global) DESCA( NB_ ) The blocking factor used to distribute
* the columns of the array.
* RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
* row of the array A is distributed.
* CSRC_A (global) DESCA( CSRC_ ) The process column over which the
* first column of the array A is
* distributed.
* LLD_A (local) DESCA( LLD_ ) The leading dimension of the local
* array. LLD_A >= MAX(1,LOCr(M_A)).
*
* Let K be the number of rows or columns of a distributed matrix,
* and assume that its process grid has dimension p x q.
* LOCr( K ) denotes the number of elements of K that a process
* would receive if K were distributed over the p processes of its
* process column.
* Similarly, LOCc( K ) denotes the number of elements of K that a
* process would receive if K were distributed over the q processes of
* its process row.
* The values of LOCr() and LOCc() may be determined via a call to the
* ScaLAPACK tool function, NUMROC:
* LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
* LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).
* An upper bound for these quantities may be computed by:
* LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
* LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A
*
* Arguments
* =========
*
* TRANS (global input) CHARACTER*1
* Specifies the form of the system of equations:
* = 'N': sub( A )*sub( X ) = sub( B )
* = 'T': sub( A' )*sub( X )= sub( B ), where A' is the
* transpose of sub( A ).
* = 'C': sub( A' )*sub( X )= B, where A' is the conjugate
* transpose of sub( A ).
*
* M (global input) INTEGER
* The number of rows to be operated on, i.e. the number of rows
* of the distributed submatrix sub( A ). M >= 0.
*
* N (global input) INTEGER
* The number of columns to be operated on, i.e. the number of
* columns of the distributed submatrix sub( A ). N >= 0.
*
* NRHS (global input) INTEGER
* The number of right hand sides, i.e., the number of columns
* of the distributed submatrix sub( B ). NRHS >= 0.
*
* A (local input) COMPLEX*16 pointer into the local
* memory to an array of dimension (LLD_A,LOCc(JA+N-1)).
* The original M x N matrix A.
*
* IA (global input) INTEGER
* The row index in the global array A indicating the first
* row of sub( A ).
*
* JA (global input) INTEGER
* The column index in the global array A indicating the
* first column of sub( A ).
*
* DESCA (global and local input) INTEGER array of dimension DLEN_.
* The array descriptor for the distributed matrix A.
*
* X (local input) COMPLEX*16 pointer into the local
* memory to an array of dimension (LLD_X,LOCc(JX+NRHS-1)). This
* array contains the local pieces of the computed solution
* distributed vectors for the system of linear equations.
*
* IX (global input) INTEGER
* The row index in the global array X indicating the first
* row of sub( X ).
*
* JX (global input) INTEGER
* The column index in the global array X indicating the
* first column of sub( X ).
*
* DESCX (global and local input) INTEGER array of dimension DLEN_.
* The array descriptor for the distributed matrix X.
*
* B (local input/local output) COMPLEX*16 pointer into
* the local memory to an array of dimension
* (LLD_B,LOCc(JB+NRHS-1)). On entry, this array contains the
* local pieces of the distributes right hand side vectors for
* the system of linear equations. On exit, sub( B ) is over-
* written with the difference sub( B ) - sub( A )*sub( X ) or
* sub( B ) - sub( A )'*sub( X ).
*
* IB (global input) INTEGER
* The row index in the global array B indicating the first
* row of sub( B ).
*
* JB (global input) INTEGER
* The column index in the global array B indicating the
* first column of sub( B ).
*
* DESCB (global and local input) INTEGER array of dimension DLEN_.
* The array descriptor for the distributed matrix B.
*
* RWORK (local workspace) DOUBLE PRECISION array, dimension (LRWORK)
* LWORK >= Nq0 if TRANS = 'N', and LRWORK >= Mp0 otherwise.
*
* where
*
* IROFFA = MOD( IA-1, MB_A ), ICOFFA = MOD( JA-1, NB_A ),
* IAROW = INDXG2P( IA, MB_A, MYROW, RSRC_A, NPROW ),
* IACOL = INDXG2P( JA, NB_A, MYCOL, CSRC_A, NPCOL ),
* Mp0 = NUMROC( M+IROFFA, MB_A, MYROW, IAROW, NPROW ),
* Nq0 = NUMROC( N+ICOFFA, NB_A, MYCOL, IACOL, NPCOL ),
*
* INDXG2P and NUMROC are ScaLAPACK tool functions; MYROW,
* MYCOL, NPROW and NPCOL can be determined by calling the
* subroutine BLACS_GRIDINFO.
*
* RESID (global output) DOUBLE PRECISION
* The maximum over the number of right hand sides of
* norm( sub( B )- sub( A )*sub( X ) ) /
* ( max(m,n) * norm( sub( A ) ) * norm( sub( X ) ) * EPS ).
*
* =====================================================================
*
* .. Parameters ..
INTEGER BLOCK_CYCLIC_2D, CSRC_, CTXT_, DLEN_, DTYPE_,
$ LLD_, MB_, M_, NB_, N_, RSRC_
PARAMETER ( BLOCK_CYCLIC_2D = 1, DLEN_ = 9, DTYPE_ = 1,
$ CTXT_ = 2, M_ = 3, N_ = 4, MB_ = 5, NB_ = 6,
$ RSRC_ = 7, CSRC_ = 8, LLD_ = 9 )
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
COMPLEX*16 CONE
PARAMETER ( CONE = ( 1.0D+0, 0.0D+0 ) )
* ..
* .. Local Scalars ..
INTEGER ICTXT, IDUMM, J, MYCOL, MYROW, N1, N2, NPCOL,
$ NPROW
DOUBLE PRECISION ANORM, BNORM, EPS, XNORM
* ..
* .. Local Arrays ..
DOUBLE PRECISION TEMP( 2 )
* ..
* .. External Functions ..
LOGICAL LSAME
DOUBLE PRECISION PDLAMCH, PZLANGE
EXTERNAL LSAME, PDLAMCH, PDLANGE
* ..
* .. External Subroutines ..
EXTERNAL BLACS_GRIDINFO, DGAMX2D, PDZASUM,
$ PZGEMM
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX
* ..
* .. Executable Statements ..
*
* Get grid parameters
*
ICTXT = DESCA( CTXT_ )
CALL BLACS_GRIDINFO( ICTXT, NPROW, NPCOL, MYROW, MYCOL )
*
* Quick exit if M = 0 or N = 0 or NRHS = 0
*
IF( M.LE.0 .OR. N.LE.0 .OR. NRHS.EQ.0 ) THEN
RESID = ZERO
RETURN
END IF
*
IF( LSAME( TRANS, 'T' ) .OR. LSAME( TRANS, 'C' ) ) THEN
ANORM = PZLANGE( 'I', M, N, A, IA, JA, DESCA, RWORK )
N1 = N
N2 = M
ELSE
ANORM = PZLANGE( '1', M, N, A, IA, JA, DESCA, RWORK )
N1 = M
N2 = N
END IF
*
EPS = PDLAMCH( ICTXT, 'Epsilon' )
*
* Compute B - sub( A )*sub( X ) (or B - sub( A' )*sub( X ) ) and
* store in B.
*
CALL PZGEMM( TRANS, 'No transpose', N1, NRHS, N2, -CONE, A, IA,
$ JA, DESCA, X, IX, JX, DESCX, CONE, B, IB, JB, DESCB )
*
* Compute the maximum over the number of right hand sides of
* norm( sub( B ) - sub( A )*sub( X ) ) /
* ( max(m,n) * norm( sub( A ) ) * norm( sub( X ) ) * EPS ).
*
RESID = ZERO
DO 10 J = 1, NRHS
*
CALL PDZASUM( N1, BNORM, B, IB, JB+J-1, DESCB, 1 )
CALL PDZASUM( N2, XNORM, X, IX, JX+J-1, DESCX, 1 )
*
* Only the process columns owning the vector operands will have
* the correct result, the other will have zero.
*
TEMP( 1 ) = BNORM
TEMP( 2 ) = XNORM
CALL DGAMX2D( ICTXT, 'All', ' ', 2, 1, TEMP, 2, IDUMM, IDUMM,
$ -1, -1, IDUMM )
BNORM = TEMP( 1 )
XNORM = TEMP( 2 )
*
* Every processes have ANORM, BNORM and XNORM now.
*
IF( ANORM.EQ.ZERO .AND. BNORM.EQ.ZERO ) THEN
RESID = ZERO
ELSE IF( ANORM.LE.ZERO .OR. XNORM.LE.ZERO ) THEN
RESID = ONE / EPS
ELSE
RESID = MAX( RESID, ( ( BNORM / ANORM ) / XNORM ) /
$ ( MAX( M, N )*EPS ) )
END IF
*
10 CONTINUE
*
RETURN
*
* End of PZQRT16
*
END
|