File: clarfg.f

package info (click to toggle)
scalapack 1.7.4-2
  • links: PTS
  • area: main
  • in suites: etch, etch-m68k
  • size: 34,004 kB
  • ctags: 30,444
  • sloc: fortran: 310,201; ansic: 64,027; makefile: 1,838; sh: 4
file content (146 lines) | stat: -rw-r--r-- 4,075 bytes parent folder | download | duplicates (16)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
      SUBROUTINE CLARFG( N, ALPHA, X, INCX, TAU )
*
*  -- LAPACK auxiliary routine (version 3.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     September 30, 1994
*
*     .. Scalar Arguments ..
      INTEGER            INCX, N
      COMPLEX            ALPHA, TAU
*     ..
*     .. Array Arguments ..
      COMPLEX            X( * )
*     ..
*
*  Purpose
*  =======
*
*  CLARFG generates a complex elementary reflector H of order n, such
*  that
*
*        H' * ( alpha ) = ( beta ),   H' * H = I.
*             (   x   )   (   0  )
*
*  where alpha and beta are scalars, with beta real, and x is an
*  (n-1)-element complex vector. H is represented in the form
*
*        H = I - tau * ( 1 ) * ( 1 v' ) ,
*                      ( v )
*
*  where tau is a complex scalar and v is a complex (n-1)-element
*  vector. Note that H is not hermitian.
*
*  If the elements of x are all zero and alpha is real, then tau = 0
*  and H is taken to be the unit matrix.
*
*  Otherwise  1 <= real(tau) <= 2  and  abs(tau-1) <= 1 .
*
*  Arguments
*  =========
*
*  N       (input) INTEGER
*          The order of the elementary reflector.
*
*  ALPHA   (input/output) COMPLEX
*          On entry, the value alpha.
*          On exit, it is overwritten with the value beta.
*
*  X       (input/output) COMPLEX array, dimension
*                         (1+(N-2)*abs(INCX))
*          On entry, the vector x.
*          On exit, it is overwritten with the vector v.
*
*  INCX    (input) INTEGER
*          The increment between elements of X. INCX > 0.
*
*  TAU     (output) COMPLEX
*          The value tau.
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ONE, ZERO
      PARAMETER          ( ONE = 1.0E+0, ZERO = 0.0E+0 )
*     ..
*     .. Local Scalars ..
      INTEGER            J, KNT
      REAL               ALPHI, ALPHR, BETA, RSAFMN, SAFMIN, XNORM
*     ..
*     .. External Functions ..
      REAL               SCNRM2, SLAMCH, SLAPY3
      COMPLEX            CLADIV
      EXTERNAL           SCNRM2, SLAMCH, SLAPY3, CLADIV
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, AIMAG, CMPLX, REAL, SIGN
*     ..
*     .. External Subroutines ..
      EXTERNAL           CSCAL, CSSCAL
*     ..
*     .. Executable Statements ..
*
      IF( N.LE.0 ) THEN
         TAU = ZERO
         RETURN
      END IF
*
      XNORM = SCNRM2( N-1, X, INCX )
      ALPHR = REAL( ALPHA )
      ALPHI = AIMAG( ALPHA )
*
      IF( XNORM.EQ.ZERO .AND. ALPHI.EQ.ZERO ) THEN
*
*        H  =  I
*
         TAU = ZERO
      ELSE
*
*        general case
*
         BETA = -SIGN( SLAPY3( ALPHR, ALPHI, XNORM ), ALPHR )
         SAFMIN = SLAMCH( 'S' ) / SLAMCH( 'E' )
         RSAFMN = ONE / SAFMIN
*
         IF( ABS( BETA ).LT.SAFMIN ) THEN
*
*           XNORM, BETA may be inaccurate; scale X and recompute them
*
            KNT = 0
   10       CONTINUE
            KNT = KNT + 1
            CALL CSSCAL( N-1, RSAFMN, X, INCX )
            BETA = BETA*RSAFMN
            ALPHI = ALPHI*RSAFMN
            ALPHR = ALPHR*RSAFMN
            IF( ABS( BETA ).LT.SAFMIN )
     $         GO TO 10
*
*           New BETA is at most 1, at least SAFMIN
*
            XNORM = SCNRM2( N-1, X, INCX )
            ALPHA = CMPLX( ALPHR, ALPHI )
            BETA = -SIGN( SLAPY3( ALPHR, ALPHI, XNORM ), ALPHR )
            TAU = CMPLX( ( BETA-ALPHR ) / BETA, -ALPHI / BETA )
            ALPHA = CLADIV( CMPLX( ONE ), ALPHA-BETA )
            CALL CSCAL( N-1, ALPHA, X, INCX )
*
*           If ALPHA is subnormal, it may lose relative accuracy
*
            ALPHA = BETA
            DO 20 J = 1, KNT
               ALPHA = ALPHA*SAFMIN
   20       CONTINUE
         ELSE
            TAU = CMPLX( ( BETA-ALPHR ) / BETA, -ALPHI / BETA )
            ALPHA = CLADIV( CMPLX( ONE ), ALPHA-BETA )
            CALL CSCAL( N-1, ALPHA, X, INCX )
            ALPHA = BETA
         END IF
      END IF
*
      RETURN
*
*     End of CLARFG
*
      END