1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
|
SUBROUTINE CLARTG( F, G, CS, SN, R )
*
* -- LAPACK auxiliary routine (version 3.0) --
* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
* Courant Institute, Argonne National Lab, and Rice University
* June 30, 1999
*
* .. Scalar Arguments ..
REAL CS
COMPLEX F, G, R, SN
* ..
*
* Purpose
* =======
*
* CLARTG generates a plane rotation so that
*
* [ CS SN ] [ F ] [ R ]
* [ __ ] . [ ] = [ ] where CS**2 + |SN|**2 = 1.
* [ -SN CS ] [ G ] [ 0 ]
*
* This is a faster version of the BLAS1 routine CROTG, except for
* the following differences:
* F and G are unchanged on return.
* If G=0, then CS=1 and SN=0.
* If F=0, then CS=0 and SN is chosen so that R is real.
*
* Arguments
* =========
*
* F (input) COMPLEX
* The first component of vector to be rotated.
*
* G (input) COMPLEX
* The second component of vector to be rotated.
*
* CS (output) REAL
* The cosine of the rotation.
*
* SN (output) COMPLEX
* The sine of the rotation.
*
* R (output) COMPLEX
* The nonzero component of the rotated vector.
*
* Further Details
* ======= =======
*
* 3-5-96 - Modified with a new algorithm by W. Kahan and J. Demmel
*
* =====================================================================
*
* .. Parameters ..
REAL TWO, ONE, ZERO
PARAMETER ( TWO = 2.0E+0, ONE = 1.0E+0, ZERO = 0.0E+0 )
COMPLEX CZERO
PARAMETER ( CZERO = ( 0.0E+0, 0.0E+0 ) )
* ..
* .. Local Scalars ..
LOGICAL FIRST
INTEGER COUNT, I
REAL D, DI, DR, EPS, F2, F2S, G2, G2S, SAFMIN,
$ SAFMN2, SAFMX2, SCALE
COMPLEX FF, FS, GS
* ..
* .. External Functions ..
REAL SLAMCH, SLAPY2
EXTERNAL SLAMCH, SLAPY2
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, AIMAG, CMPLX, CONJG, INT, LOG, MAX, REAL,
$ SQRT
* ..
* .. Statement Functions ..
REAL ABS1, ABSSQ
* ..
* .. Save statement ..
SAVE FIRST, SAFMX2, SAFMIN, SAFMN2
* ..
* .. Data statements ..
DATA FIRST / .TRUE. /
* ..
* .. Statement Function definitions ..
ABS1( FF ) = MAX( ABS( REAL( FF ) ), ABS( AIMAG( FF ) ) )
ABSSQ( FF ) = REAL( FF )**2 + AIMAG( FF )**2
* ..
* .. Executable Statements ..
*
IF( FIRST ) THEN
FIRST = .FALSE.
SAFMIN = SLAMCH( 'S' )
EPS = SLAMCH( 'E' )
SAFMN2 = SLAMCH( 'B' )**INT( LOG( SAFMIN / EPS ) /
$ LOG( SLAMCH( 'B' ) ) / TWO )
SAFMX2 = ONE / SAFMN2
END IF
SCALE = MAX( ABS1( F ), ABS1( G ) )
FS = F
GS = G
COUNT = 0
IF( SCALE.GE.SAFMX2 ) THEN
10 CONTINUE
COUNT = COUNT + 1
FS = FS*SAFMN2
GS = GS*SAFMN2
SCALE = SCALE*SAFMN2
IF( SCALE.GE.SAFMX2 )
$ GO TO 10
ELSE IF( SCALE.LE.SAFMN2 ) THEN
IF( G.EQ.CZERO ) THEN
CS = ONE
SN = CZERO
R = F
RETURN
END IF
20 CONTINUE
COUNT = COUNT - 1
FS = FS*SAFMX2
GS = GS*SAFMX2
SCALE = SCALE*SAFMX2
IF( SCALE.LE.SAFMN2 )
$ GO TO 20
END IF
F2 = ABSSQ( FS )
G2 = ABSSQ( GS )
IF( F2.LE.MAX( G2, ONE )*SAFMIN ) THEN
*
* This is a rare case: F is very small.
*
IF( F.EQ.CZERO ) THEN
CS = ZERO
R = SLAPY2( REAL( G ), AIMAG( G ) )
* Do complex/real division explicitly with two real divisions
D = SLAPY2( REAL( GS ), AIMAG( GS ) )
SN = CMPLX( REAL( GS ) / D, -AIMAG( GS ) / D )
RETURN
END IF
F2S = SLAPY2( REAL( FS ), AIMAG( FS ) )
* G2 and G2S are accurate
* G2 is at least SAFMIN, and G2S is at least SAFMN2
G2S = SQRT( G2 )
* Error in CS from underflow in F2S is at most
* UNFL / SAFMN2 .lt. sqrt(UNFL*EPS) .lt. EPS
* If MAX(G2,ONE)=G2, then F2 .lt. G2*SAFMIN,
* and so CS .lt. sqrt(SAFMIN)
* If MAX(G2,ONE)=ONE, then F2 .lt. SAFMIN
* and so CS .lt. sqrt(SAFMIN)/SAFMN2 = sqrt(EPS)
* Therefore, CS = F2S/G2S / sqrt( 1 + (F2S/G2S)**2 ) = F2S/G2S
CS = F2S / G2S
* Make sure abs(FF) = 1
* Do complex/real division explicitly with 2 real divisions
IF( ABS1( F ).GT.ONE ) THEN
D = SLAPY2( REAL( F ), AIMAG( F ) )
FF = CMPLX( REAL( F ) / D, AIMAG( F ) / D )
ELSE
DR = SAFMX2*REAL( F )
DI = SAFMX2*AIMAG( F )
D = SLAPY2( DR, DI )
FF = CMPLX( DR / D, DI / D )
END IF
SN = FF*CMPLX( REAL( GS ) / G2S, -AIMAG( GS ) / G2S )
R = CS*F + SN*G
ELSE
*
* This is the most common case.
* Neither F2 nor F2/G2 are less than SAFMIN
* F2S cannot overflow, and it is accurate
*
F2S = SQRT( ONE+G2 / F2 )
* Do the F2S(real)*FS(complex) multiply with two real multiplies
R = CMPLX( F2S*REAL( FS ), F2S*AIMAG( FS ) )
CS = ONE / F2S
D = F2 + G2
* Do complex/real division explicitly with two real divisions
SN = CMPLX( REAL( R ) / D, AIMAG( R ) / D )
SN = SN*CONJG( GS )
IF( COUNT.NE.0 ) THEN
IF( COUNT.GT.0 ) THEN
DO 30 I = 1, COUNT
R = R*SAFMX2
30 CONTINUE
ELSE
DO 40 I = 1, -COUNT
R = R*SAFMN2
40 CONTINUE
END IF
END IF
END IF
RETURN
*
* End of CLARTG
*
END
|