File: dgetf2.f

package info (click to toggle)
scalapack 1.7.4-2
  • links: PTS
  • area: main
  • in suites: etch, etch-m68k
  • size: 34,004 kB
  • ctags: 30,444
  • sloc: fortran: 310,201; ansic: 64,027; makefile: 1,838; sh: 4
file content (135 lines) | stat: -rw-r--r-- 3,810 bytes parent folder | download | duplicates (22)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
      SUBROUTINE DGETF2( M, N, A, LDA, IPIV, INFO )
*
*  -- LAPACK routine (version 3.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     June 30, 1992
*
*     .. Scalar Arguments ..
      INTEGER            INFO, LDA, M, N
*     ..
*     .. Array Arguments ..
      INTEGER            IPIV( * )
      DOUBLE PRECISION   A( LDA, * )
*     ..
*
*  Purpose
*  =======
*
*  DGETF2 computes an LU factorization of a general m-by-n matrix A
*  using partial pivoting with row interchanges.
*
*  The factorization has the form
*     A = P * L * U
*  where P is a permutation matrix, L is lower triangular with unit
*  diagonal elements (lower trapezoidal if m > n), and U is upper
*  triangular (upper trapezoidal if m < n).
*
*  This is the right-looking Level 2 BLAS version of the algorithm.
*
*  Arguments
*  =========
*
*  M       (input) INTEGER
*          The number of rows of the matrix A.  M >= 0.
*
*  N       (input) INTEGER
*          The number of columns of the matrix A.  N >= 0.
*
*  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
*          On entry, the m by n matrix to be factored.
*          On exit, the factors L and U from the factorization
*          A = P*L*U; the unit diagonal elements of L are not stored.
*
*  LDA     (input) INTEGER
*          The leading dimension of the array A.  LDA >= max(1,M).
*
*  IPIV    (output) INTEGER array, dimension (min(M,N))
*          The pivot indices; for 1 <= i <= min(M,N), row i of the
*          matrix was interchanged with row IPIV(i).
*
*  INFO    (output) INTEGER
*          = 0: successful exit
*          < 0: if INFO = -k, the k-th argument had an illegal value
*          > 0: if INFO = k, U(k,k) is exactly zero. The factorization
*               has been completed, but the factor U is exactly
*               singular, and division by zero will occur if it is used
*               to solve a system of equations.
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ONE, ZERO
      PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
*     ..
*     .. Local Scalars ..
      INTEGER            J, JP
*     ..
*     .. External Functions ..
      INTEGER            IDAMAX
      EXTERNAL           IDAMAX
*     ..
*     .. External Subroutines ..
      EXTERNAL           DGER, DSCAL, DSWAP, XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAX, MIN
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters.
*
      INFO = 0
      IF( M.LT.0 ) THEN
         INFO = -1
      ELSE IF( N.LT.0 ) THEN
         INFO = -2
      ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
         INFO = -4
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'DGETF2', -INFO )
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( M.EQ.0 .OR. N.EQ.0 )
     $   RETURN
*
      DO 10 J = 1, MIN( M, N )
*
*        Find pivot and test for singularity.
*
         JP = J - 1 + IDAMAX( M-J+1, A( J, J ), 1 )
         IPIV( J ) = JP
         IF( A( JP, J ).NE.ZERO ) THEN
*
*           Apply the interchange to columns 1:N.
*
            IF( JP.NE.J )
     $         CALL DSWAP( N, A( J, 1 ), LDA, A( JP, 1 ), LDA )
*
*           Compute elements J+1:M of J-th column.
*
            IF( J.LT.M )
     $         CALL DSCAL( M-J, ONE / A( J, J ), A( J+1, J ), 1 )
*
         ELSE IF( INFO.EQ.0 ) THEN
*
            INFO = J
         END IF
*
         IF( J.LT.MIN( M, N ) ) THEN
*
*           Update trailing submatrix.
*
            CALL DGER( M-J, N-J, -ONE, A( J+1, J ), 1, A( J, J+1 ), LDA,
     $                 A( J+1, J+1 ), LDA )
         END IF
   10 CONTINUE
      RETURN
*
*     End of DGETF2
*
      END