File: dlaed0.f

package info (click to toggle)
scalapack 1.7.4-2
  • links: PTS
  • area: main
  • in suites: etch, etch-m68k
  • size: 34,004 kB
  • ctags: 30,444
  • sloc: fortran: 310,201; ansic: 64,027; makefile: 1,838; sh: 4
file content (350 lines) | stat: -rw-r--r-- 11,720 bytes parent folder | download | duplicates (16)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
      SUBROUTINE DLAED0( ICOMPQ, QSIZ, N, D, E, Q, LDQ, QSTORE, LDQS,
     $                   WORK, IWORK, INFO )
*
*  -- LAPACK routine (version 3.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     June 30, 1999
*
*     .. Scalar Arguments ..
      INTEGER            ICOMPQ, INFO, LDQ, LDQS, N, QSIZ
*     ..
*     .. Array Arguments ..
      INTEGER            IWORK( * )
      DOUBLE PRECISION   D( * ), E( * ), Q( LDQ, * ), QSTORE( LDQS, * ),
     $                   WORK( * )
*     ..
*
*  Purpose
*  =======
*
*  DLAED0 computes all eigenvalues and corresponding eigenvectors of a
*  symmetric tridiagonal matrix using the divide and conquer method.
*
*  Arguments
*  =========
*
*  ICOMPQ  (input) INTEGER
*          = 0:  Compute eigenvalues only.
*          = 1:  Compute eigenvectors of original dense symmetric matrix
*                also.  On entry, Q contains the orthogonal matrix used
*                to reduce the original matrix to tridiagonal form.
*          = 2:  Compute eigenvalues and eigenvectors of tridiagonal
*                matrix.
*
*  QSIZ   (input) INTEGER
*         The dimension of the orthogonal matrix used to reduce
*         the full matrix to tridiagonal form.  QSIZ >= N if ICOMPQ = 1.
*
*  N      (input) INTEGER
*         The dimension of the symmetric tridiagonal matrix.  N >= 0.
*
*  D      (input/output) DOUBLE PRECISION array, dimension (N)
*         On entry, the main diagonal of the tridiagonal matrix.
*         On exit, its eigenvalues.
*
*  E      (input) DOUBLE PRECISION array, dimension (N-1)
*         The off-diagonal elements of the tridiagonal matrix.
*         On exit, E has been destroyed.
*
*  Q      (input/output) DOUBLE PRECISION array, dimension (LDQ, N)
*         On entry, Q must contain an N-by-N orthogonal matrix.
*         If ICOMPQ = 0    Q is not referenced.
*         If ICOMPQ = 1    On entry, Q is a subset of the columns of the
*                          orthogonal matrix used to reduce the full
*                          matrix to tridiagonal form corresponding to
*                          the subset of the full matrix which is being
*                          decomposed at this time.
*         If ICOMPQ = 2    On entry, Q will be the identity matrix.
*                          On exit, Q contains the eigenvectors of the
*                          tridiagonal matrix.
*
*  LDQ    (input) INTEGER
*         The leading dimension of the array Q.  If eigenvectors are
*         desired, then  LDQ >= max(1,N).  In any case,  LDQ >= 1.
*
*  QSTORE (workspace) DOUBLE PRECISION array, dimension (LDQS, N)
*         Referenced only when ICOMPQ = 1.  Used to store parts of
*         the eigenvector matrix when the updating matrix multiplies
*         take place.
*
*  LDQS   (input) INTEGER
*         The leading dimension of the array QSTORE.  If ICOMPQ = 1,
*         then  LDQS >= max(1,N).  In any case,  LDQS >= 1.
*
*  WORK   (workspace) DOUBLE PRECISION array,
*         If ICOMPQ = 0 or 1, the dimension of WORK must be at least
*                     1 + 3*N + 2*N*lg N + 2*N**2
*                     ( lg( N ) = smallest integer k
*                                 such that 2^k >= N )
*         If ICOMPQ = 2, the dimension of WORK must be at least
*                     4*N + N**2.
*
*  IWORK  (workspace) INTEGER array,
*         If ICOMPQ = 0 or 1, the dimension of IWORK must be at least
*                        6 + 6*N + 5*N*lg N.
*                        ( lg( N ) = smallest integer k
*                                    such that 2^k >= N )
*         If ICOMPQ = 2, the dimension of IWORK must be at least
*                        3 + 5*N.
*
*  INFO   (output) INTEGER
*          = 0:  successful exit.
*          < 0:  if INFO = -i, the i-th argument had an illegal value.
*          > 0:  The algorithm failed to compute an eigenvalue while
*                working on the submatrix lying in rows and columns
*                INFO/(N+1) through mod(INFO,N+1).
*
*  Further Details
*  ===============
*
*  Based on contributions by
*     Jeff Rutter, Computer Science Division, University of California
*     at Berkeley, USA
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ZERO, ONE, TWO
      PARAMETER          ( ZERO = 0.D0, ONE = 1.D0, TWO = 2.D0 )
*     ..
*     .. Local Scalars ..
      INTEGER            CURLVL, CURPRB, CURR, I, IGIVCL, IGIVNM,
     $                   IGIVPT, INDXQ, IPERM, IPRMPT, IQ, IQPTR, IWREM,
     $                   J, K, LGN, MATSIZ, MSD2, SMLSIZ, SMM1, SPM1,
     $                   SPM2, SUBMAT, SUBPBS, TLVLS
      DOUBLE PRECISION   TEMP
*     ..
*     .. External Subroutines ..
      EXTERNAL           DCOPY, DGEMM, DLACPY, DLAED1, DLAED7, DSTEQR,
     $                   XERBLA
*     ..
*     .. External Functions ..
      INTEGER            ILAENV
      EXTERNAL           ILAENV
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, DBLE, INT, LOG, MAX
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters.
*
      INFO = 0
*
      IF( ICOMPQ.LT.0 .OR. ICOMPQ.GT.2 ) THEN
         INFO = -1
      ELSE IF( ( ICOMPQ.EQ.1 ) .AND. ( QSIZ.LT.MAX( 0, N ) ) ) THEN
         INFO = -2
      ELSE IF( N.LT.0 ) THEN
         INFO = -3
      ELSE IF( LDQ.LT.MAX( 1, N ) ) THEN
         INFO = -7
      ELSE IF( LDQS.LT.MAX( 1, N ) ) THEN
         INFO = -9
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'DLAED0', -INFO )
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( N.EQ.0 )
     $   RETURN
*
      SMLSIZ = ILAENV( 9, 'DLAED0', ' ', 0, 0, 0, 0 )
*
*     Determine the size and placement of the submatrices, and save in
*     the leading elements of IWORK.
*
      IWORK( 1 ) = N
      SUBPBS = 1
      TLVLS = 0
   10 CONTINUE
      IF( IWORK( SUBPBS ).GT.SMLSIZ ) THEN
         DO 20 J = SUBPBS, 1, -1
            IWORK( 2*J ) = ( IWORK( J )+1 ) / 2
            IWORK( 2*J-1 ) = IWORK( J ) / 2
   20    CONTINUE
         TLVLS = TLVLS + 1
         SUBPBS = 2*SUBPBS
         GO TO 10
      END IF
      DO 30 J = 2, SUBPBS
         IWORK( J ) = IWORK( J ) + IWORK( J-1 )
   30 CONTINUE
*
*     Divide the matrix into SUBPBS submatrices of size at most SMLSIZ+1
*     using rank-1 modifications (cuts).
*
      SPM1 = SUBPBS - 1
      DO 40 I = 1, SPM1
         SUBMAT = IWORK( I ) + 1
         SMM1 = SUBMAT - 1
         D( SMM1 ) = D( SMM1 ) - ABS( E( SMM1 ) )
         D( SUBMAT ) = D( SUBMAT ) - ABS( E( SMM1 ) )
   40 CONTINUE
*
      INDXQ = 4*N + 3
      IF( ICOMPQ.NE.2 ) THEN
*
*        Set up workspaces for eigenvalues only/accumulate new vectors
*        routine
*
         TEMP = LOG( DBLE( N ) ) / LOG( TWO )
         LGN = INT( TEMP )
         IF( 2**LGN.LT.N )
     $      LGN = LGN + 1
         IF( 2**LGN.LT.N )
     $      LGN = LGN + 1
         IPRMPT = INDXQ + N + 1
         IPERM = IPRMPT + N*LGN
         IQPTR = IPERM + N*LGN
         IGIVPT = IQPTR + N + 2
         IGIVCL = IGIVPT + N*LGN
*
         IGIVNM = 1
         IQ = IGIVNM + 2*N*LGN
         IWREM = IQ + N**2 + 1
*
*        Initialize pointers
*
         DO 50 I = 0, SUBPBS
            IWORK( IPRMPT+I ) = 1
            IWORK( IGIVPT+I ) = 1
   50    CONTINUE
         IWORK( IQPTR ) = 1
      END IF
*
*     Solve each submatrix eigenproblem at the bottom of the divide and
*     conquer tree.
*
      CURR = 0
      DO 70 I = 0, SPM1
         IF( I.EQ.0 ) THEN
            SUBMAT = 1
            MATSIZ = IWORK( 1 )
         ELSE
            SUBMAT = IWORK( I ) + 1
            MATSIZ = IWORK( I+1 ) - IWORK( I )
         END IF
         IF( ICOMPQ.EQ.2 ) THEN
            CALL DSTEQR( 'I', MATSIZ, D( SUBMAT ), E( SUBMAT ),
     $                   Q( SUBMAT, SUBMAT ), LDQ, WORK, INFO )
            IF( INFO.NE.0 )
     $         GO TO 130
         ELSE
            CALL DSTEQR( 'I', MATSIZ, D( SUBMAT ), E( SUBMAT ),
     $                   WORK( IQ-1+IWORK( IQPTR+CURR ) ), MATSIZ, WORK,
     $                   INFO )
            IF( INFO.NE.0 )
     $         GO TO 130
            IF( ICOMPQ.EQ.1 ) THEN
               CALL DGEMM( 'N', 'N', QSIZ, MATSIZ, MATSIZ, ONE,
     $                     Q( 1, SUBMAT ), LDQ, WORK( IQ-1+IWORK( IQPTR+
     $                     CURR ) ), MATSIZ, ZERO, QSTORE( 1, SUBMAT ),
     $                     LDQS )
            END IF
            IWORK( IQPTR+CURR+1 ) = IWORK( IQPTR+CURR ) + MATSIZ**2
            CURR = CURR + 1
         END IF
         K = 1
         DO 60 J = SUBMAT, IWORK( I+1 )
            IWORK( INDXQ+J ) = K
            K = K + 1
   60    CONTINUE
   70 CONTINUE
*
*     Successively merge eigensystems of adjacent submatrices
*     into eigensystem for the corresponding larger matrix.
*
*     while ( SUBPBS > 1 )
*
      CURLVL = 1
   80 CONTINUE
      IF( SUBPBS.GT.1 ) THEN
         SPM2 = SUBPBS - 2
         DO 90 I = 0, SPM2, 2
            IF( I.EQ.0 ) THEN
               SUBMAT = 1
               MATSIZ = IWORK( 2 )
               MSD2 = IWORK( 1 )
               CURPRB = 0
            ELSE
               SUBMAT = IWORK( I ) + 1
               MATSIZ = IWORK( I+2 ) - IWORK( I )
               MSD2 = MATSIZ / 2
               CURPRB = CURPRB + 1
            END IF
*
*     Merge lower order eigensystems (of size MSD2 and MATSIZ - MSD2)
*     into an eigensystem of size MATSIZ.
*     DLAED1 is used only for the full eigensystem of a tridiagonal
*     matrix.
*     DLAED7 handles the cases in which eigenvalues only or eigenvalues
*     and eigenvectors of a full symmetric matrix (which was reduced to
*     tridiagonal form) are desired.
*
            IF( ICOMPQ.EQ.2 ) THEN
               CALL DLAED1( MATSIZ, D( SUBMAT ), Q( SUBMAT, SUBMAT ),
     $                      LDQ, IWORK( INDXQ+SUBMAT ),
     $                      E( SUBMAT+MSD2-1 ), MSD2, WORK,
     $                      IWORK( SUBPBS+1 ), INFO )
            ELSE
               CALL DLAED7( ICOMPQ, MATSIZ, QSIZ, TLVLS, CURLVL, CURPRB,
     $                      D( SUBMAT ), QSTORE( 1, SUBMAT ), LDQS,
     $                      IWORK( INDXQ+SUBMAT ), E( SUBMAT+MSD2-1 ),
     $                      MSD2, WORK( IQ ), IWORK( IQPTR ),
     $                      IWORK( IPRMPT ), IWORK( IPERM ),
     $                      IWORK( IGIVPT ), IWORK( IGIVCL ),
     $                      WORK( IGIVNM ), WORK( IWREM ),
     $                      IWORK( SUBPBS+1 ), INFO )
            END IF
            IF( INFO.NE.0 )
     $         GO TO 130
            IWORK( I / 2+1 ) = IWORK( I+2 )
   90    CONTINUE
         SUBPBS = SUBPBS / 2
         CURLVL = CURLVL + 1
         GO TO 80
      END IF
*
*     end while
*
*     Re-merge the eigenvalues/vectors which were deflated at the final
*     merge step.
*
      IF( ICOMPQ.EQ.1 ) THEN
         DO 100 I = 1, N
            J = IWORK( INDXQ+I )
            WORK( I ) = D( J )
            CALL DCOPY( QSIZ, QSTORE( 1, J ), 1, Q( 1, I ), 1 )
  100    CONTINUE
         CALL DCOPY( N, WORK, 1, D, 1 )
      ELSE IF( ICOMPQ.EQ.2 ) THEN
         DO 110 I = 1, N
            J = IWORK( INDXQ+I )
            WORK( I ) = D( J )
            CALL DCOPY( N, Q( 1, J ), 1, WORK( N*I+1 ), 1 )
  110    CONTINUE
         CALL DCOPY( N, WORK, 1, D, 1 )
         CALL DLACPY( 'A', N, N, WORK( N+1 ), N, Q, LDQ )
      ELSE
         DO 120 I = 1, N
            J = IWORK( INDXQ+I )
            WORK( I ) = D( J )
  120    CONTINUE
         CALL DCOPY( N, WORK, 1, D, 1 )
      END IF
      GO TO 140
*
  130 CONTINUE
      INFO = SUBMAT*( N+1 ) + SUBMAT + MATSIZ - 1
*
  140 CONTINUE
      RETURN
*
*     End of DLAED0
*
      END