1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
|
SUBROUTINE DLAGTF( N, A, LAMBDA, B, C, TOL, D, IN, INFO )
*
* -- LAPACK routine (version 3.0) --
* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
* Courant Institute, Argonne National Lab, and Rice University
* June 30, 1999
*
* .. Scalar Arguments ..
INTEGER INFO, N
DOUBLE PRECISION LAMBDA, TOL
* ..
* .. Array Arguments ..
INTEGER IN( * )
DOUBLE PRECISION A( * ), B( * ), C( * ), D( * )
* ..
*
* Purpose
* =======
*
* DLAGTF factorizes the matrix (T - lambda*I), where T is an n by n
* tridiagonal matrix and lambda is a scalar, as
*
* T - lambda*I = PLU,
*
* where P is a permutation matrix, L is a unit lower tridiagonal matrix
* with at most one non-zero sub-diagonal elements per column and U is
* an upper triangular matrix with at most two non-zero super-diagonal
* elements per column.
*
* The factorization is obtained by Gaussian elimination with partial
* pivoting and implicit row scaling.
*
* The parameter LAMBDA is included in the routine so that DLAGTF may
* be used, in conjunction with DLAGTS, to obtain eigenvectors of T by
* inverse iteration.
*
* Arguments
* =========
*
* N (input) INTEGER
* The order of the matrix T.
*
* A (input/output) DOUBLE PRECISION array, dimension (N)
* On entry, A must contain the diagonal elements of T.
*
* On exit, A is overwritten by the n diagonal elements of the
* upper triangular matrix U of the factorization of T.
*
* LAMBDA (input) DOUBLE PRECISION
* On entry, the scalar lambda.
*
* B (input/output) DOUBLE PRECISION array, dimension (N-1)
* On entry, B must contain the (n-1) super-diagonal elements of
* T.
*
* On exit, B is overwritten by the (n-1) super-diagonal
* elements of the matrix U of the factorization of T.
*
* C (input/output) DOUBLE PRECISION array, dimension (N-1)
* On entry, C must contain the (n-1) sub-diagonal elements of
* T.
*
* On exit, C is overwritten by the (n-1) sub-diagonal elements
* of the matrix L of the factorization of T.
*
* TOL (input) DOUBLE PRECISION
* On entry, a relative tolerance used to indicate whether or
* not the matrix (T - lambda*I) is nearly singular. TOL should
* normally be chose as approximately the largest relative error
* in the elements of T. For example, if the elements of T are
* correct to about 4 significant figures, then TOL should be
* set to about 5*10**(-4). If TOL is supplied as less than eps,
* where eps is the relative machine precision, then the value
* eps is used in place of TOL.
*
* D (output) DOUBLE PRECISION array, dimension (N-2)
* On exit, D is overwritten by the (n-2) second super-diagonal
* elements of the matrix U of the factorization of T.
*
* IN (output) INTEGER array, dimension (N)
* On exit, IN contains details of the permutation matrix P. If
* an interchange occurred at the kth step of the elimination,
* then IN(k) = 1, otherwise IN(k) = 0. The element IN(n)
* returns the smallest positive integer j such that
*
* abs( u(j,j) ).le. norm( (T - lambda*I)(j) )*TOL,
*
* where norm( A(j) ) denotes the sum of the absolute values of
* the jth row of the matrix A. If no such j exists then IN(n)
* is returned as zero. If IN(n) is returned as positive, then a
* diagonal element of U is small, indicating that
* (T - lambda*I) is singular or nearly singular,
*
* INFO (output) INTEGER
* = 0 : successful exit
* .lt. 0: if INFO = -k, the kth argument had an illegal value
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ZERO
PARAMETER ( ZERO = 0.0D+0 )
* ..
* .. Local Scalars ..
INTEGER K
DOUBLE PRECISION EPS, MULT, PIV1, PIV2, SCALE1, SCALE2, TEMP, TL
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, MAX
* ..
* .. External Functions ..
DOUBLE PRECISION DLAMCH
EXTERNAL DLAMCH
* ..
* .. External Subroutines ..
EXTERNAL XERBLA
* ..
* .. Executable Statements ..
*
INFO = 0
IF( N.LT.0 ) THEN
INFO = -1
CALL XERBLA( 'DLAGTF', -INFO )
RETURN
END IF
*
IF( N.EQ.0 )
$ RETURN
*
A( 1 ) = A( 1 ) - LAMBDA
IN( N ) = 0
IF( N.EQ.1 ) THEN
IF( A( 1 ).EQ.ZERO )
$ IN( 1 ) = 1
RETURN
END IF
*
EPS = DLAMCH( 'Epsilon' )
*
TL = MAX( TOL, EPS )
SCALE1 = ABS( A( 1 ) ) + ABS( B( 1 ) )
DO 10 K = 1, N - 1
A( K+1 ) = A( K+1 ) - LAMBDA
SCALE2 = ABS( C( K ) ) + ABS( A( K+1 ) )
IF( K.LT.( N-1 ) )
$ SCALE2 = SCALE2 + ABS( B( K+1 ) )
IF( A( K ).EQ.ZERO ) THEN
PIV1 = ZERO
ELSE
PIV1 = ABS( A( K ) ) / SCALE1
END IF
IF( C( K ).EQ.ZERO ) THEN
IN( K ) = 0
PIV2 = ZERO
SCALE1 = SCALE2
IF( K.LT.( N-1 ) )
$ D( K ) = ZERO
ELSE
PIV2 = ABS( C( K ) ) / SCALE2
IF( PIV2.LE.PIV1 ) THEN
IN( K ) = 0
SCALE1 = SCALE2
C( K ) = C( K ) / A( K )
A( K+1 ) = A( K+1 ) - C( K )*B( K )
IF( K.LT.( N-1 ) )
$ D( K ) = ZERO
ELSE
IN( K ) = 1
MULT = A( K ) / C( K )
A( K ) = C( K )
TEMP = A( K+1 )
A( K+1 ) = B( K ) - MULT*TEMP
IF( K.LT.( N-1 ) ) THEN
D( K ) = B( K+1 )
B( K+1 ) = -MULT*D( K )
END IF
B( K ) = TEMP
C( K ) = MULT
END IF
END IF
IF( ( MAX( PIV1, PIV2 ).LE.TL ) .AND. ( IN( N ).EQ.0 ) )
$ IN( N ) = K
10 CONTINUE
IF( ( ABS( A( N ) ).LE.SCALE1*TL ) .AND. ( IN( N ).EQ.0 ) )
$ IN( N ) = N
*
RETURN
*
* End of DLAGTF
*
END
|