1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
|
SUBROUTINE DLANV2( A, B, C, D, RT1R, RT1I, RT2R, RT2I, CS, SN )
*
* -- LAPACK driver routine (version 3.0) --
* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
* Courant Institute, Argonne National Lab, and Rice University
* June 30, 1999
*
* .. Scalar Arguments ..
DOUBLE PRECISION A, B, C, CS, D, RT1I, RT1R, RT2I, RT2R, SN
* ..
*
* Purpose
* =======
*
* DLANV2 computes the Schur factorization of a real 2-by-2 nonsymmetric
* matrix in standard form:
*
* [ A B ] = [ CS -SN ] [ AA BB ] [ CS SN ]
* [ C D ] [ SN CS ] [ CC DD ] [-SN CS ]
*
* where either
* 1) CC = 0 so that AA and DD are real eigenvalues of the matrix, or
* 2) AA = DD and BB*CC < 0, so that AA + or - sqrt(BB*CC) are complex
* conjugate eigenvalues.
*
* Arguments
* =========
*
* A (input/output) DOUBLE PRECISION
* B (input/output) DOUBLE PRECISION
* C (input/output) DOUBLE PRECISION
* D (input/output) DOUBLE PRECISION
* On entry, the elements of the input matrix.
* On exit, they are overwritten by the elements of the
* standardised Schur form.
*
* RT1R (output) DOUBLE PRECISION
* RT1I (output) DOUBLE PRECISION
* RT2R (output) DOUBLE PRECISION
* RT2I (output) DOUBLE PRECISION
* The real and imaginary parts of the eigenvalues. If the
* eigenvalues are a complex conjugate pair, RT1I > 0.
*
* CS (output) DOUBLE PRECISION
* SN (output) DOUBLE PRECISION
* Parameters of the rotation matrix.
*
* Further Details
* ===============
*
* Modified by V. Sima, Research Institute for Informatics, Bucharest,
* Romania, to reduce the risk of cancellation errors,
* when computing real eigenvalues, and to ensure, if possible, that
* abs(RT1R) >= abs(RT2R).
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ZERO, HALF, ONE
PARAMETER ( ZERO = 0.0D+0, HALF = 0.5D+0, ONE = 1.0D+0 )
DOUBLE PRECISION MULTPL
PARAMETER ( MULTPL = 4.0D+0 )
* ..
* .. Local Scalars ..
DOUBLE PRECISION AA, BB, BCMAX, BCMIS, CC, CS1, DD, EPS, P, SAB,
$ SAC, SCALE, SIGMA, SN1, TAU, TEMP, Z
* ..
* .. External Functions ..
DOUBLE PRECISION DLAMCH, DLAPY2
EXTERNAL DLAMCH, DLAPY2
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, MAX, MIN, SIGN, SQRT
* ..
* .. Executable Statements ..
*
EPS = DLAMCH( 'P' )
IF( C.EQ.ZERO ) THEN
CS = ONE
SN = ZERO
GO TO 10
*
ELSE IF( B.EQ.ZERO ) THEN
*
* Swap rows and columns
*
CS = ZERO
SN = ONE
TEMP = D
D = A
A = TEMP
B = -C
C = ZERO
GO TO 10
ELSE IF( ( A-D ).EQ.ZERO .AND. SIGN( ONE, B ).NE.SIGN( ONE, C ) )
$ THEN
CS = ONE
SN = ZERO
GO TO 10
ELSE
*
TEMP = A - D
P = HALF*TEMP
BCMAX = MAX( ABS( B ), ABS( C ) )
BCMIS = MIN( ABS( B ), ABS( C ) )*SIGN( ONE, B )*SIGN( ONE, C )
SCALE = MAX( ABS( P ), BCMAX )
Z = ( P / SCALE )*P + ( BCMAX / SCALE )*BCMIS
*
* If Z is of the order of the machine accuracy, postpone the
* decision on the nature of eigenvalues
*
IF( Z.GE.MULTPL*EPS ) THEN
*
* Real eigenvalues. Compute A and D.
*
Z = P + SIGN( SQRT( SCALE )*SQRT( Z ), P )
A = D + Z
D = D - ( BCMAX / Z )*BCMIS
*
* Compute B and the rotation matrix
*
TAU = DLAPY2( C, Z )
CS = Z / TAU
SN = C / TAU
B = B - C
C = ZERO
ELSE
*
* Complex eigenvalues, or real (almost) equal eigenvalues.
* Make diagonal elements equal.
*
SIGMA = B + C
TAU = DLAPY2( SIGMA, TEMP )
CS = SQRT( HALF*( ONE+ABS( SIGMA ) / TAU ) )
SN = -( P / ( TAU*CS ) )*SIGN( ONE, SIGMA )
*
* Compute [ AA BB ] = [ A B ] [ CS -SN ]
* [ CC DD ] [ C D ] [ SN CS ]
*
AA = A*CS + B*SN
BB = -A*SN + B*CS
CC = C*CS + D*SN
DD = -C*SN + D*CS
*
* Compute [ A B ] = [ CS SN ] [ AA BB ]
* [ C D ] [-SN CS ] [ CC DD ]
*
A = AA*CS + CC*SN
B = BB*CS + DD*SN
C = -AA*SN + CC*CS
D = -BB*SN + DD*CS
*
TEMP = HALF*( A+D )
A = TEMP
D = TEMP
*
IF( C.NE.ZERO ) THEN
IF( B.NE.ZERO ) THEN
IF( SIGN( ONE, B ).EQ.SIGN( ONE, C ) ) THEN
*
* Real eigenvalues: reduce to upper triangular form
*
SAB = SQRT( ABS( B ) )
SAC = SQRT( ABS( C ) )
P = SIGN( SAB*SAC, C )
TAU = ONE / SQRT( ABS( B+C ) )
A = TEMP + P
D = TEMP - P
B = B - C
C = ZERO
CS1 = SAB*TAU
SN1 = SAC*TAU
TEMP = CS*CS1 - SN*SN1
SN = CS*SN1 + SN*CS1
CS = TEMP
END IF
ELSE
B = -C
C = ZERO
TEMP = CS
CS = -SN
SN = TEMP
END IF
END IF
END IF
*
END IF
*
10 CONTINUE
*
* Store eigenvalues in (RT1R,RT1I) and (RT2R,RT2I).
*
RT1R = A
RT2R = D
IF( C.EQ.ZERO ) THEN
RT1I = ZERO
RT2I = ZERO
ELSE
RT1I = SQRT( ABS( B ) )*SQRT( ABS( C ) )
RT2I = -RT1I
END IF
RETURN
*
* End of DLANV2
*
END
|