1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
|
SUBROUTINE DLASQ3( I0, N0, Z, PP, DMIN, SIGMA, DESIG, QMAX, NFAIL,
$ ITER, NDIV, IEEE )
*
* -- LAPACK auxiliary routine (version 3.0) --
* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
* Courant Institute, Argonne National Lab, and Rice University
* December 22, 1999
*
* .. Scalar Arguments ..
LOGICAL IEEE
INTEGER I0, ITER, N0, NDIV, NFAIL, PP
DOUBLE PRECISION DESIG, DMIN, QMAX, SIGMA
* ..
* .. Array Arguments ..
DOUBLE PRECISION Z( * )
* ..
*
* Purpose
* =======
*
* DLASQ3 checks for deflation, computes a shift (TAU) and calls dqds.
* In case of failure it changes shifts, and tries again until output
* is positive.
*
* Arguments
* =========
*
* I0 (input) INTEGER
* First index.
*
* N0 (input) INTEGER
* Last index.
*
* Z (input) DOUBLE PRECISION array, dimension ( 4*N )
* Z holds the qd array.
*
* PP (input) INTEGER
* PP=0 for ping, PP=1 for pong.
*
* DMIN (output) DOUBLE PRECISION
* Minimum value of d.
*
* SIGMA (output) DOUBLE PRECISION
* Sum of shifts used in current segment.
*
* DESIG (input/output) DOUBLE PRECISION
* Lower order part of SIGMA
*
* QMAX (input) DOUBLE PRECISION
* Maximum value of q.
*
* NFAIL (output) INTEGER
* Number of times shift was too big.
*
* ITER (output) INTEGER
* Number of iterations.
*
* NDIV (output) INTEGER
* Number of divisions.
*
* TTYPE (output) INTEGER
* Shift type.
*
* IEEE (input) LOGICAL
* Flag for IEEE or non IEEE arithmetic (passed to DLASQ5).
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION CBIAS
PARAMETER ( CBIAS = 1.50D0 )
DOUBLE PRECISION ZERO, QURTR, HALF, ONE, TWO, HUNDRD
PARAMETER ( ZERO = 0.0D0, QURTR = 0.250D0, HALF = 0.5D0,
$ ONE = 1.0D0, TWO = 2.0D0, HUNDRD = 100.0D0 )
* ..
* .. Local Scalars ..
INTEGER IPN4, J4, N0IN, NN, TTYPE
DOUBLE PRECISION DMIN1, DMIN2, DN, DN1, DN2, EPS, S, SAFMIN, T,
$ TAU, TEMP, TOL, TOL2
* ..
* .. External Subroutines ..
EXTERNAL DLASQ4, DLASQ5, DLASQ6
* ..
* .. External Function ..
DOUBLE PRECISION DLAMCH
EXTERNAL DLAMCH
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, MIN, SQRT
* ..
* .. Save statement ..
SAVE TTYPE
SAVE DMIN1, DMIN2, DN, DN1, DN2, TAU
* ..
* .. Data statement ..
DATA TTYPE / 0 /
DATA DMIN1 / ZERO /, DMIN2 / ZERO /, DN / ZERO /,
$ DN1 / ZERO /, DN2 / ZERO /, TAU / ZERO /
* ..
* .. Executable Statements ..
*
N0IN = N0
EPS = DLAMCH( 'Precision' )
SAFMIN = DLAMCH( 'Safe minimum' )
TOL = EPS*HUNDRD
TOL2 = TOL**2
*
* Check for deflation.
*
10 CONTINUE
*
IF( N0.LT.I0 )
$ RETURN
IF( N0.EQ.I0 )
$ GO TO 20
NN = 4*N0 + PP
IF( N0.EQ.( I0+1 ) )
$ GO TO 40
*
* Check whether E(N0-1) is negligible, 1 eigenvalue.
*
IF( Z( NN-5 ).GT.TOL2*( SIGMA+Z( NN-3 ) ) .AND.
$ Z( NN-2*PP-4 ).GT.TOL2*Z( NN-7 ) )
$ GO TO 30
*
20 CONTINUE
*
Z( 4*N0-3 ) = Z( 4*N0+PP-3 ) + SIGMA
N0 = N0 - 1
GO TO 10
*
* Check whether E(N0-2) is negligible, 2 eigenvalues.
*
30 CONTINUE
*
IF( Z( NN-9 ).GT.TOL2*SIGMA .AND.
$ Z( NN-2*PP-8 ).GT.TOL2*Z( NN-11 ) )
$ GO TO 50
*
40 CONTINUE
*
IF( Z( NN-3 ).GT.Z( NN-7 ) ) THEN
S = Z( NN-3 )
Z( NN-3 ) = Z( NN-7 )
Z( NN-7 ) = S
END IF
IF( Z( NN-5 ).GT.Z( NN-3 )*TOL2 ) THEN
T = HALF*( ( Z( NN-7 )-Z( NN-3 ) )+Z( NN-5 ) )
S = Z( NN-3 )*( Z( NN-5 ) / T )
IF( S.LE.T ) THEN
S = Z( NN-3 )*( Z( NN-5 ) /
$ ( T*( ONE+SQRT( ONE+S / T ) ) ) )
ELSE
S = Z( NN-3 )*( Z( NN-5 ) / ( T+SQRT( T )*SQRT( T+S ) ) )
END IF
T = Z( NN-7 ) + ( S+Z( NN-5 ) )
Z( NN-3 ) = Z( NN-3 )*( Z( NN-7 ) / T )
Z( NN-7 ) = T
END IF
Z( 4*N0-7 ) = Z( NN-7 ) + SIGMA
Z( 4*N0-3 ) = Z( NN-3 ) + SIGMA
N0 = N0 - 2
GO TO 10
*
50 CONTINUE
*
* Reverse the qd-array, if warranted.
*
IF( DMIN.LE.ZERO .OR. N0.LT.N0IN ) THEN
IF( CBIAS*Z( 4*I0+PP-3 ).LT.Z( 4*N0+PP-3 ) ) THEN
IPN4 = 4*( I0+N0 )
DO 60 J4 = 4*I0, 2*( I0+N0-1 ), 4
TEMP = Z( J4-3 )
Z( J4-3 ) = Z( IPN4-J4-3 )
Z( IPN4-J4-3 ) = TEMP
TEMP = Z( J4-2 )
Z( J4-2 ) = Z( IPN4-J4-2 )
Z( IPN4-J4-2 ) = TEMP
TEMP = Z( J4-1 )
Z( J4-1 ) = Z( IPN4-J4-5 )
Z( IPN4-J4-5 ) = TEMP
TEMP = Z( J4 )
Z( J4 ) = Z( IPN4-J4-4 )
Z( IPN4-J4-4 ) = TEMP
60 CONTINUE
IF( N0-I0.LE.4 ) THEN
Z( 4*N0+PP-1 ) = Z( 4*I0+PP-1 )
Z( 4*N0-PP ) = Z( 4*I0-PP )
END IF
DMIN2 = MIN( DMIN2, Z( 4*N0+PP-1 ) )
Z( 4*N0+PP-1 ) = MIN( Z( 4*N0+PP-1 ), Z( 4*I0+PP-1 ),
$ Z( 4*I0+PP+3 ) )
Z( 4*N0-PP ) = MIN( Z( 4*N0-PP ), Z( 4*I0-PP ),
$ Z( 4*I0-PP+4 ) )
QMAX = MAX( QMAX, Z( 4*I0+PP-3 ), Z( 4*I0+PP+1 ) )
DMIN = -ZERO
END IF
END IF
*
70 CONTINUE
*
IF( DMIN.LT.ZERO .OR. SAFMIN*QMAX.LT.MIN( Z( 4*N0+PP-1 ),
$ Z( 4*N0+PP-9 ), DMIN2+Z( 4*N0-PP ) ) ) THEN
*
* Choose a shift.
*
CALL DLASQ4( I0, N0, Z, PP, N0IN, DMIN, DMIN1, DMIN2, DN, DN1,
$ DN2, TAU, TTYPE )
*
* Call dqds until DMIN > 0.
*
80 CONTINUE
*
CALL DLASQ5( I0, N0, Z, PP, TAU, DMIN, DMIN1, DMIN2, DN,
$ DN1, DN2, IEEE )
*
NDIV = NDIV + ( N0-I0+2 )
ITER = ITER + 1
*
IF( DMIN.NE.DMIN ) THEN
*
* Check for NaN: "DMIN.NE.DMIN"
*
Z( 4*N0+PP-1 ) = ZERO
GO TO 70
ELSE IF( Z( 4*N0-PP ).LE.ZERO ) THEN
*
* Possible unnecessary underflow in the e's.
* Call safe dqd.
*
Z( 4*N0+PP-1 ) = ZERO
DMIN = ZERO
GO TO 70
ELSE IF( DMIN.EQ.ZERO .AND. TAU.EQ.ZERO ) THEN
*
* Possible unnecessary underflow in the d's.
* Call safe dqd.
*
Z( 4*N0+PP-1 ) = ZERO
GO TO 70
END IF
*
* Check for convergence hidden by negative DN.
*
IF( DMIN.LT.ZERO .AND. DMIN1.GT.ZERO .AND. Z( 4*( N0-1 )-PP )
$ .LT.TOL*( SIGMA+DN1 ) .AND. ABS( DN ).LT.TOL*SIGMA ) THEN
Z( 4*( N0-1 )-PP+2 ) = ZERO
DMIN = ABS( DMIN )
END IF
*
IF( DMIN.LT.ZERO ) THEN
*
* Failure. Select new TAU and try again.
*
NFAIL = NFAIL + 1
*
* Failed twice. Play it safe.
*
IF( TTYPE.LT.-22 ) THEN
Z( 4*N0+PP-1 ) = ZERO
DMIN = ZERO
GO TO 70
END IF
*
IF( DMIN1.GT.ZERO ) THEN
*
* Late failure. Gives excellent shift.
*
TAU = ( TAU+DMIN )*( ONE-TWO*EPS )
TTYPE = TTYPE - 11
ELSE
*
* Early failure. Divide by 4.
*
TAU = QURTR*TAU
TTYPE = TTYPE - 12
END IF
GO TO 80
END IF
ELSE
CALL DLASQ6( I0, N0, Z, PP, DMIN, DMIN1, DMIN2, DN, DN1, DN2 )
NDIV = NDIV + ( N0-I0 )
ITER = ITER + 1
TAU = ZERO
END IF
*
IF( TAU.LT.SIGMA ) THEN
DESIG = DESIG + TAU
T = SIGMA + DESIG
DESIG = DESIG - ( T-SIGMA )
ELSE
T = SIGMA + TAU
DESIG = SIGMA - ( T-TAU ) + DESIG
END IF
SIGMA = T
*
RETURN
*
* End of DLASQ3
*
END
|