File: dlasq3.f

package info (click to toggle)
scalapack 1.7.4-2
  • links: PTS
  • area: main
  • in suites: etch, etch-m68k
  • size: 34,004 kB
  • ctags: 30,444
  • sloc: fortran: 310,201; ansic: 64,027; makefile: 1,838; sh: 4
file content (301 lines) | stat: -rw-r--r-- 8,181 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
      SUBROUTINE DLASQ3( I0, N0, Z, PP, DMIN, SIGMA, DESIG, QMAX, NFAIL,
     $                   ITER, NDIV, IEEE )
*
*  -- LAPACK auxiliary routine (version 3.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     December 22, 1999
*
*     .. Scalar Arguments ..
      LOGICAL            IEEE
      INTEGER            I0, ITER, N0, NDIV, NFAIL, PP
      DOUBLE PRECISION   DESIG, DMIN, QMAX, SIGMA
*     ..
*     .. Array Arguments ..
      DOUBLE PRECISION   Z( * )
*     ..
*
*  Purpose
*  =======
*
*  DLASQ3 checks for deflation, computes a shift (TAU) and calls dqds.
*  In case of failure it changes shifts, and tries again until output
*  is positive.
*
*  Arguments
*  =========
*
*  I0     (input) INTEGER
*         First index.
*
*  N0     (input) INTEGER
*         Last index.
*
*  Z      (input) DOUBLE PRECISION array, dimension ( 4*N )
*         Z holds the qd array. 
*
*  PP     (input) INTEGER
*         PP=0 for ping, PP=1 for pong.
*
*  DMIN   (output) DOUBLE PRECISION
*         Minimum value of d.
*
*  SIGMA  (output) DOUBLE PRECISION
*         Sum of shifts used in current segment.
*
*  DESIG  (input/output) DOUBLE PRECISION
*         Lower order part of SIGMA
*
*  QMAX   (input) DOUBLE PRECISION
*         Maximum value of q.        
*
*  NFAIL  (output) INTEGER
*         Number of times shift was too big.
*
*  ITER   (output) INTEGER
*         Number of iterations.
*
*  NDIV   (output) INTEGER
*         Number of divisions.
*
*  TTYPE  (output) INTEGER
*         Shift type.
*
*  IEEE   (input) LOGICAL
*         Flag for IEEE or non IEEE arithmetic (passed to DLASQ5).
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   CBIAS
      PARAMETER          ( CBIAS = 1.50D0 )
      DOUBLE PRECISION   ZERO, QURTR, HALF, ONE, TWO, HUNDRD
      PARAMETER          ( ZERO = 0.0D0, QURTR = 0.250D0, HALF = 0.5D0,
     $                     ONE = 1.0D0, TWO = 2.0D0, HUNDRD = 100.0D0 )
*     ..
*     .. Local Scalars ..
      INTEGER            IPN4, J4, N0IN, NN, TTYPE
      DOUBLE PRECISION   DMIN1, DMIN2, DN, DN1, DN2, EPS, S, SAFMIN, T, 
     $                   TAU, TEMP, TOL, TOL2
*     ..
*     .. External Subroutines ..
      EXTERNAL           DLASQ4, DLASQ5, DLASQ6
*     ..
*     .. External Function ..
      DOUBLE PRECISION   DLAMCH
      EXTERNAL           DLAMCH
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, MIN, SQRT
*     ..
*     .. Save statement ..
      SAVE               TTYPE
      SAVE               DMIN1, DMIN2, DN, DN1, DN2, TAU
*     ..
*     .. Data statement ..
      DATA               TTYPE / 0 /
      DATA               DMIN1 / ZERO /, DMIN2 / ZERO /, DN / ZERO /,
     $                   DN1 / ZERO /, DN2 / ZERO /, TAU / ZERO /
*     ..
*     .. Executable Statements ..
*
      N0IN = N0
      EPS = DLAMCH( 'Precision' )
      SAFMIN = DLAMCH( 'Safe minimum' )
      TOL = EPS*HUNDRD
      TOL2 = TOL**2
*
*     Check for deflation. 
*
   10 CONTINUE
*
      IF( N0.LT.I0 )
     $   RETURN
      IF( N0.EQ.I0 ) 
     $   GO TO 20
      NN = 4*N0 + PP
      IF( N0.EQ.( I0+1 ) ) 
     $   GO TO 40
*
*     Check whether E(N0-1) is negligible, 1 eigenvalue.
*
      IF( Z( NN-5 ).GT.TOL2*( SIGMA+Z( NN-3 ) ) .AND.
     $    Z( NN-2*PP-4 ).GT.TOL2*Z( NN-7 ) )
     $   GO TO 30
*
   20 CONTINUE
*
      Z( 4*N0-3 ) = Z( 4*N0+PP-3 ) + SIGMA
      N0 = N0 - 1
      GO TO 10
*
*     Check  whether E(N0-2) is negligible, 2 eigenvalues.
*
   30 CONTINUE
*
      IF( Z( NN-9 ).GT.TOL2*SIGMA .AND.
     $    Z( NN-2*PP-8 ).GT.TOL2*Z( NN-11 ) )
     $   GO TO 50
*
   40 CONTINUE
*
      IF( Z( NN-3 ).GT.Z( NN-7 ) ) THEN
         S = Z( NN-3 )
         Z( NN-3 ) = Z( NN-7 )
         Z( NN-7 ) = S
      END IF
      IF( Z( NN-5 ).GT.Z( NN-3 )*TOL2 ) THEN
         T = HALF*( ( Z( NN-7 )-Z( NN-3 ) )+Z( NN-5 ) )
         S = Z( NN-3 )*( Z( NN-5 ) / T )
         IF( S.LE.T ) THEN
            S = Z( NN-3 )*( Z( NN-5 ) /
     $          ( T*( ONE+SQRT( ONE+S / T ) ) ) )
         ELSE
            S = Z( NN-3 )*( Z( NN-5 ) / ( T+SQRT( T )*SQRT( T+S ) ) )
         END IF
         T = Z( NN-7 ) + ( S+Z( NN-5 ) )
         Z( NN-3 ) = Z( NN-3 )*( Z( NN-7 ) / T )
         Z( NN-7 ) = T
      END IF
      Z( 4*N0-7 ) = Z( NN-7 ) + SIGMA
      Z( 4*N0-3 ) = Z( NN-3 ) + SIGMA
      N0 = N0 - 2
      GO TO 10
*
   50 CONTINUE
*
*     Reverse the qd-array, if warranted.
*
      IF( DMIN.LE.ZERO .OR. N0.LT.N0IN ) THEN
         IF( CBIAS*Z( 4*I0+PP-3 ).LT.Z( 4*N0+PP-3 ) ) THEN
            IPN4 = 4*( I0+N0 )
            DO 60 J4 = 4*I0, 2*( I0+N0-1 ), 4
               TEMP = Z( J4-3 )
               Z( J4-3 ) = Z( IPN4-J4-3 )
               Z( IPN4-J4-3 ) = TEMP
               TEMP = Z( J4-2 )
               Z( J4-2 ) = Z( IPN4-J4-2 )
               Z( IPN4-J4-2 ) = TEMP
               TEMP = Z( J4-1 )
               Z( J4-1 ) = Z( IPN4-J4-5 )
               Z( IPN4-J4-5 ) = TEMP
               TEMP = Z( J4 )
               Z( J4 ) = Z( IPN4-J4-4 )
               Z( IPN4-J4-4 ) = TEMP
   60       CONTINUE
            IF( N0-I0.LE.4 ) THEN
               Z( 4*N0+PP-1 ) = Z( 4*I0+PP-1 )
               Z( 4*N0-PP ) = Z( 4*I0-PP )
            END IF
            DMIN2 = MIN( DMIN2, Z( 4*N0+PP-1 ) )
            Z( 4*N0+PP-1 ) = MIN( Z( 4*N0+PP-1 ), Z( 4*I0+PP-1 ),
     $                            Z( 4*I0+PP+3 ) )
            Z( 4*N0-PP ) = MIN( Z( 4*N0-PP ), Z( 4*I0-PP ),
     $                          Z( 4*I0-PP+4 ) )
            QMAX = MAX( QMAX, Z( 4*I0+PP-3 ), Z( 4*I0+PP+1 ) )
            DMIN = -ZERO
         END IF
      END IF
*
   70 CONTINUE
*
      IF( DMIN.LT.ZERO .OR. SAFMIN*QMAX.LT.MIN( Z( 4*N0+PP-1 ),
     $    Z( 4*N0+PP-9 ), DMIN2+Z( 4*N0-PP ) ) ) THEN
*
*        Choose a shift.
*
         CALL DLASQ4( I0, N0, Z, PP, N0IN, DMIN, DMIN1, DMIN2, DN, DN1,
     $                DN2, TAU, TTYPE )
*
*        Call dqds until DMIN > 0.
*
   80    CONTINUE
*
         CALL DLASQ5( I0, N0, Z, PP, TAU, DMIN, DMIN1, DMIN2, DN,
     $                DN1, DN2, IEEE )
*
         NDIV = NDIV + ( N0-I0+2 )
         ITER = ITER + 1
*
         IF( DMIN.NE.DMIN ) THEN
*
*           Check for NaN: "DMIN.NE.DMIN" 
*
            Z( 4*N0+PP-1 ) = ZERO
            GO TO 70
         ELSE IF( Z( 4*N0-PP ).LE.ZERO ) THEN
*
*           Possible unnecessary underflow in the e's.
*           Call safe dqd.
*
            Z( 4*N0+PP-1 ) = ZERO
            DMIN = ZERO
            GO TO 70
         ELSE IF( DMIN.EQ.ZERO .AND. TAU.EQ.ZERO ) THEN
*
*           Possible unnecessary underflow in the d's.
*           Call safe dqd.
*
            Z( 4*N0+PP-1 ) = ZERO
            GO TO 70
         END IF
*
*        Check for convergence hidden by negative DN.
*
         IF( DMIN.LT.ZERO .AND. DMIN1.GT.ZERO .AND. Z( 4*( N0-1 )-PP ) 
     $       .LT.TOL*( SIGMA+DN1 ) .AND. ABS( DN ).LT.TOL*SIGMA ) THEN
            Z( 4*( N0-1 )-PP+2 ) = ZERO
            DMIN = ABS( DMIN )
         END IF
*
         IF( DMIN.LT.ZERO ) THEN
*
*           Failure. Select new TAU and try again.
*
            NFAIL = NFAIL + 1
*
*           Failed twice. Play it safe.
*
            IF( TTYPE.LT.-22 ) THEN
               Z( 4*N0+PP-1 ) = ZERO
               DMIN = ZERO
               GO TO 70
            END IF
*
            IF( DMIN1.GT.ZERO ) THEN
*
*              Late failure. Gives excellent shift.
*
               TAU = ( TAU+DMIN )*( ONE-TWO*EPS ) 
               TTYPE = TTYPE - 11 
            ELSE
*
*              Early failure. Divide by 4.
*
               TAU = QURTR*TAU
               TTYPE = TTYPE - 12
            END IF
            GO TO 80
         END IF
      ELSE
         CALL DLASQ6( I0, N0, Z, PP, DMIN, DMIN1, DMIN2, DN, DN1, DN2 )
         NDIV = NDIV + ( N0-I0 )
         ITER = ITER + 1
         TAU = ZERO
      END IF
*
      IF( TAU.LT.SIGMA ) THEN
         DESIG = DESIG + TAU
         T = SIGMA + DESIG 
         DESIG = DESIG - ( T-SIGMA )
      ELSE
         T = SIGMA + TAU
         DESIG = SIGMA - ( T-TAU ) + DESIG
      END IF
      SIGMA = T
*
      RETURN
*
*     End of DLASQ3
*
      END