1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
|
SUBROUTINE DLASV2( F, G, H, SSMIN, SSMAX, SNR, CSR, SNL, CSL )
*
* -- LAPACK auxiliary routine (version 3.0) --
* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
* Courant Institute, Argonne National Lab, and Rice University
* October 31, 1992
*
* .. Scalar Arguments ..
DOUBLE PRECISION CSL, CSR, F, G, H, SNL, SNR, SSMAX, SSMIN
* ..
*
* Purpose
* =======
*
* DLASV2 computes the singular value decomposition of a 2-by-2
* triangular matrix
* [ F G ]
* [ 0 H ].
* On return, abs(SSMAX) is the larger singular value, abs(SSMIN) is the
* smaller singular value, and (CSL,SNL) and (CSR,SNR) are the left and
* right singular vectors for abs(SSMAX), giving the decomposition
*
* [ CSL SNL ] [ F G ] [ CSR -SNR ] = [ SSMAX 0 ]
* [-SNL CSL ] [ 0 H ] [ SNR CSR ] [ 0 SSMIN ].
*
* Arguments
* =========
*
* F (input) DOUBLE PRECISION
* The (1,1) element of the 2-by-2 matrix.
*
* G (input) DOUBLE PRECISION
* The (1,2) element of the 2-by-2 matrix.
*
* H (input) DOUBLE PRECISION
* The (2,2) element of the 2-by-2 matrix.
*
* SSMIN (output) DOUBLE PRECISION
* abs(SSMIN) is the smaller singular value.
*
* SSMAX (output) DOUBLE PRECISION
* abs(SSMAX) is the larger singular value.
*
* SNL (output) DOUBLE PRECISION
* CSL (output) DOUBLE PRECISION
* The vector (CSL, SNL) is a unit left singular vector for the
* singular value abs(SSMAX).
*
* SNR (output) DOUBLE PRECISION
* CSR (output) DOUBLE PRECISION
* The vector (CSR, SNR) is a unit right singular vector for the
* singular value abs(SSMAX).
*
* Further Details
* ===============
*
* Any input parameter may be aliased with any output parameter.
*
* Barring over/underflow and assuming a guard digit in subtraction, all
* output quantities are correct to within a few units in the last
* place (ulps).
*
* In IEEE arithmetic, the code works correctly if one matrix element is
* infinite.
*
* Overflow will not occur unless the largest singular value itself
* overflows or is within a few ulps of overflow. (On machines with
* partial overflow, like the Cray, overflow may occur if the largest
* singular value is within a factor of 2 of overflow.)
*
* Underflow is harmless if underflow is gradual. Otherwise, results
* may correspond to a matrix modified by perturbations of size near
* the underflow threshold.
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ZERO
PARAMETER ( ZERO = 0.0D0 )
DOUBLE PRECISION HALF
PARAMETER ( HALF = 0.5D0 )
DOUBLE PRECISION ONE
PARAMETER ( ONE = 1.0D0 )
DOUBLE PRECISION TWO
PARAMETER ( TWO = 2.0D0 )
DOUBLE PRECISION FOUR
PARAMETER ( FOUR = 4.0D0 )
* ..
* .. Local Scalars ..
LOGICAL GASMAL, SWAP
INTEGER PMAX
DOUBLE PRECISION A, CLT, CRT, D, FA, FT, GA, GT, HA, HT, L, M,
$ MM, R, S, SLT, SRT, T, TEMP, TSIGN, TT
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, SIGN, SQRT
* ..
* .. External Functions ..
DOUBLE PRECISION DLAMCH
EXTERNAL DLAMCH
* ..
* .. Executable Statements ..
*
FT = F
FA = ABS( FT )
HT = H
HA = ABS( H )
*
* PMAX points to the maximum absolute element of matrix
* PMAX = 1 if F largest in absolute values
* PMAX = 2 if G largest in absolute values
* PMAX = 3 if H largest in absolute values
*
PMAX = 1
SWAP = ( HA.GT.FA )
IF( SWAP ) THEN
PMAX = 3
TEMP = FT
FT = HT
HT = TEMP
TEMP = FA
FA = HA
HA = TEMP
*
* Now FA .ge. HA
*
END IF
GT = G
GA = ABS( GT )
IF( GA.EQ.ZERO ) THEN
*
* Diagonal matrix
*
SSMIN = HA
SSMAX = FA
CLT = ONE
CRT = ONE
SLT = ZERO
SRT = ZERO
ELSE
GASMAL = .TRUE.
IF( GA.GT.FA ) THEN
PMAX = 2
IF( ( FA / GA ).LT.DLAMCH( 'EPS' ) ) THEN
*
* Case of very large GA
*
GASMAL = .FALSE.
SSMAX = GA
IF( HA.GT.ONE ) THEN
SSMIN = FA / ( GA / HA )
ELSE
SSMIN = ( FA / GA )*HA
END IF
CLT = ONE
SLT = HT / GT
SRT = ONE
CRT = FT / GT
END IF
END IF
IF( GASMAL ) THEN
*
* Normal case
*
D = FA - HA
IF( D.EQ.FA ) THEN
*
* Copes with infinite F or H
*
L = ONE
ELSE
L = D / FA
END IF
*
* Note that 0 .le. L .le. 1
*
M = GT / FT
*
* Note that abs(M) .le. 1/macheps
*
T = TWO - L
*
* Note that T .ge. 1
*
MM = M*M
TT = T*T
S = SQRT( TT+MM )
*
* Note that 1 .le. S .le. 1 + 1/macheps
*
IF( L.EQ.ZERO ) THEN
R = ABS( M )
ELSE
R = SQRT( L*L+MM )
END IF
*
* Note that 0 .le. R .le. 1 + 1/macheps
*
A = HALF*( S+R )
*
* Note that 1 .le. A .le. 1 + abs(M)
*
SSMIN = HA / A
SSMAX = FA*A
IF( MM.EQ.ZERO ) THEN
*
* Note that M is very tiny
*
IF( L.EQ.ZERO ) THEN
T = SIGN( TWO, FT )*SIGN( ONE, GT )
ELSE
T = GT / SIGN( D, FT ) + M / T
END IF
ELSE
T = ( M / ( S+T )+M / ( R+L ) )*( ONE+A )
END IF
L = SQRT( T*T+FOUR )
CRT = TWO / L
SRT = T / L
CLT = ( CRT+SRT*M ) / A
SLT = ( HT / FT )*SRT / A
END IF
END IF
IF( SWAP ) THEN
CSL = SRT
SNL = CRT
CSR = SLT
SNR = CLT
ELSE
CSL = CLT
SNL = SLT
CSR = CRT
SNR = SRT
END IF
*
* Correct signs of SSMAX and SSMIN
*
IF( PMAX.EQ.1 )
$ TSIGN = SIGN( ONE, CSR )*SIGN( ONE, CSL )*SIGN( ONE, F )
IF( PMAX.EQ.2 )
$ TSIGN = SIGN( ONE, SNR )*SIGN( ONE, CSL )*SIGN( ONE, G )
IF( PMAX.EQ.3 )
$ TSIGN = SIGN( ONE, SNR )*SIGN( ONE, SNL )*SIGN( ONE, H )
SSMAX = SIGN( SSMAX, TSIGN )
SSMIN = SIGN( SSMIN, TSIGN*SIGN( ONE, F )*SIGN( ONE, H ) )
RETURN
*
* End of DLASV2
*
END
|