1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040
|
SUBROUTINE DLATMS( M, N, DIST, ISEED, SYM, D, MODE, COND, DMAX,
$ KL, KU, PACK, A, LDA, WORK, INFO )
*
* -- LAPACK test routine (version 3.0) --
* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
* Courant Institute, Argonne National Lab, and Rice University
* September 30, 1994
*
* .. Scalar Arguments ..
CHARACTER DIST, PACK, SYM
INTEGER INFO, KL, KU, LDA, M, MODE, N
DOUBLE PRECISION COND, DMAX
* ..
* .. Array Arguments ..
INTEGER ISEED( 4 )
DOUBLE PRECISION A( LDA, * ), D( * ), WORK( * )
* ..
*
* Purpose
* =======
*
* DLATMS generates random matrices with specified singular values
* (or symmetric/hermitian with specified eigenvalues)
* for testing LAPACK programs.
*
* DLATMS operates by applying the following sequence of
* operations:
*
* Set the diagonal to D, where D may be input or
* computed according to MODE, COND, DMAX, and SYM
* as described below.
*
* Generate a matrix with the appropriate band structure, by one
* of two methods:
*
* Method A:
* Generate a dense M x N matrix by multiplying D on the left
* and the right by random unitary matrices, then:
*
* Reduce the bandwidth according to KL and KU, using
* Householder transformations.
*
* Method B:
* Convert the bandwidth-0 (i.e., diagonal) matrix to a
* bandwidth-1 matrix using Givens rotations, "chasing"
* out-of-band elements back, much as in QR; then
* convert the bandwidth-1 to a bandwidth-2 matrix, etc.
* Note that for reasonably small bandwidths (relative to
* M and N) this requires less storage, as a dense matrix
* is not generated. Also, for symmetric matrices, only
* one triangle is generated.
*
* Method A is chosen if the bandwidth is a large fraction of the
* order of the matrix, and LDA is at least M (so a dense
* matrix can be stored.) Method B is chosen if the bandwidth
* is small (< 1/2 N for symmetric, < .3 N+M for
* non-symmetric), or LDA is less than M and not less than the
* bandwidth.
*
* Pack the matrix if desired. Options specified by PACK are:
* no packing
* zero out upper half (if symmetric)
* zero out lower half (if symmetric)
* store the upper half columnwise (if symmetric or upper
* triangular)
* store the lower half columnwise (if symmetric or lower
* triangular)
* store the lower triangle in banded format (if symmetric
* or lower triangular)
* store the upper triangle in banded format (if symmetric
* or upper triangular)
* store the entire matrix in banded format
* If Method B is chosen, and band format is specified, then the
* matrix will be generated in the band format, so no repacking
* will be necessary.
*
* Arguments
* =========
*
* M - INTEGER
* The number of rows of A. Not modified.
*
* N - INTEGER
* The number of columns of A. Not modified.
*
* DIST - CHARACTER*1
* On entry, DIST specifies the type of distribution to be used
* to generate the random eigen-/singular values.
* 'U' => UNIFORM( 0, 1 ) ( 'U' for uniform )
* 'S' => UNIFORM( -1, 1 ) ( 'S' for symmetric )
* 'N' => NORMAL( 0, 1 ) ( 'N' for normal )
* Not modified.
*
* ISEED - INTEGER array, dimension ( 4 )
* On entry ISEED specifies the seed of the random number
* generator. They should lie between 0 and 4095 inclusive,
* and ISEED(4) should be odd. The random number generator
* uses a linear congruential sequence limited to small
* integers, and so should produce machine independent
* random numbers. The values of ISEED are changed on
* exit, and can be used in the next call to DLATMS
* to continue the same random number sequence.
* Changed on exit.
*
* SYM - CHARACTER*1
* If SYM='S' or 'H', the generated matrix is symmetric, with
* eigenvalues specified by D, COND, MODE, and DMAX; they
* may be positive, negative, or zero.
* If SYM='P', the generated matrix is symmetric, with
* eigenvalues (= singular values) specified by D, COND,
* MODE, and DMAX; they will not be negative.
* If SYM='N', the generated matrix is nonsymmetric, with
* singular values specified by D, COND, MODE, and DMAX;
* they will not be negative.
* Not modified.
*
* D - DOUBLE PRECISION array, dimension ( MIN( M , N ) )
* This array is used to specify the singular values or
* eigenvalues of A (see SYM, above.) If MODE=0, then D is
* assumed to contain the singular/eigenvalues, otherwise
* they will be computed according to MODE, COND, and DMAX,
* and placed in D.
* Modified if MODE is nonzero.
*
* MODE - INTEGER
* On entry this describes how the singular/eigenvalues are to
* be specified:
* MODE = 0 means use D as input
* MODE = 1 sets D(1)=1 and D(2:N)=1.0/COND
* MODE = 2 sets D(1:N-1)=1 and D(N)=1.0/COND
* MODE = 3 sets D(I)=COND**(-(I-1)/(N-1))
* MODE = 4 sets D(i)=1 - (i-1)/(N-1)*(1 - 1/COND)
* MODE = 5 sets D to random numbers in the range
* ( 1/COND , 1 ) such that their logarithms
* are uniformly distributed.
* MODE = 6 set D to random numbers from same distribution
* as the rest of the matrix.
* MODE < 0 has the same meaning as ABS(MODE), except that
* the order of the elements of D is reversed.
* Thus if MODE is positive, D has entries ranging from
* 1 to 1/COND, if negative, from 1/COND to 1,
* If SYM='S' or 'H', and MODE is neither 0, 6, nor -6, then
* the elements of D will also be multiplied by a random
* sign (i.e., +1 or -1.)
* Not modified.
*
* COND - DOUBLE PRECISION
* On entry, this is used as described under MODE above.
* If used, it must be >= 1. Not modified.
*
* DMAX - DOUBLE PRECISION
* If MODE is neither -6, 0 nor 6, the contents of D, as
* computed according to MODE and COND, will be scaled by
* DMAX / max(abs(D(i))); thus, the maximum absolute eigen- or
* singular value (which is to say the norm) will be abs(DMAX).
* Note that DMAX need not be positive: if DMAX is negative
* (or zero), D will be scaled by a negative number (or zero).
* Not modified.
*
* KL - INTEGER
* This specifies the lower bandwidth of the matrix. For
* example, KL=0 implies upper triangular, KL=1 implies upper
* Hessenberg, and KL being at least M-1 means that the matrix
* has full lower bandwidth. KL must equal KU if the matrix
* is symmetric.
* Not modified.
*
* KU - INTEGER
* This specifies the upper bandwidth of the matrix. For
* example, KU=0 implies lower triangular, KU=1 implies lower
* Hessenberg, and KU being at least N-1 means that the matrix
* has full upper bandwidth. KL must equal KU if the matrix
* is symmetric.
* Not modified.
*
* PACK - CHARACTER*1
* This specifies packing of matrix as follows:
* 'N' => no packing
* 'U' => zero out all subdiagonal entries (if symmetric)
* 'L' => zero out all superdiagonal entries (if symmetric)
* 'C' => store the upper triangle columnwise
* (only if the matrix is symmetric or upper triangular)
* 'R' => store the lower triangle columnwise
* (only if the matrix is symmetric or lower triangular)
* 'B' => store the lower triangle in band storage scheme
* (only if matrix symmetric or lower triangular)
* 'Q' => store the upper triangle in band storage scheme
* (only if matrix symmetric or upper triangular)
* 'Z' => store the entire matrix in band storage scheme
* (pivoting can be provided for by using this
* option to store A in the trailing rows of
* the allocated storage)
*
* Using these options, the various LAPACK packed and banded
* storage schemes can be obtained:
* GB - use 'Z'
* PB, SB or TB - use 'B' or 'Q'
* PP, SP or TP - use 'C' or 'R'
*
* If two calls to DLATMS differ only in the PACK parameter,
* they will generate mathematically equivalent matrices.
* Not modified.
*
* A - DOUBLE PRECISION array, dimension ( LDA, N )
* On exit A is the desired test matrix. A is first generated
* in full (unpacked) form, and then packed, if so specified
* by PACK. Thus, the first M elements of the first N
* columns will always be modified. If PACK specifies a
* packed or banded storage scheme, all LDA elements of the
* first N columns will be modified; the elements of the
* array which do not correspond to elements of the generated
* matrix are set to zero.
* Modified.
*
* LDA - INTEGER
* LDA specifies the first dimension of A as declared in the
* calling program. If PACK='N', 'U', 'L', 'C', or 'R', then
* LDA must be at least M. If PACK='B' or 'Q', then LDA must
* be at least MIN( KL, M-1) (which is equal to MIN(KU,N-1)).
* If PACK='Z', LDA must be large enough to hold the packed
* array: MIN( KU, N-1) + MIN( KL, M-1) + 1.
* Not modified.
*
* WORK - DOUBLE PRECISION array, dimension ( 3*MAX( N , M ) )
* Workspace.
* Modified.
*
* INFO - INTEGER
* Error code. On exit, INFO will be set to one of the
* following values:
* 0 => normal return
* -1 => M negative or unequal to N and SYM='S', 'H', or 'P'
* -2 => N negative
* -3 => DIST illegal string
* -5 => SYM illegal string
* -7 => MODE not in range -6 to 6
* -8 => COND less than 1.0, and MODE neither -6, 0 nor 6
* -10 => KL negative
* -11 => KU negative, or SYM='S' or 'H' and KU not equal to KL
* -12 => PACK illegal string, or PACK='U' or 'L', and SYM='N';
* or PACK='C' or 'Q' and SYM='N' and KL is not zero;
* or PACK='R' or 'B' and SYM='N' and KU is not zero;
* or PACK='U', 'L', 'C', 'R', 'B', or 'Q', and M is not
* N.
* -14 => LDA is less than M, or PACK='Z' and LDA is less than
* MIN(KU,N-1) + MIN(KL,M-1) + 1.
* 1 => Error return from DLATM1
* 2 => Cannot scale to DMAX (max. sing. value is 0)
* 3 => Error return from DLAGGE or SLAGSY
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ZERO
PARAMETER ( ZERO = 0.0D0 )
DOUBLE PRECISION ONE
PARAMETER ( ONE = 1.0D0 )
DOUBLE PRECISION TWOPI
PARAMETER ( TWOPI = 6.2831853071795864769252867663D+0 )
* ..
* .. Local Scalars ..
LOGICAL GIVENS, ILEXTR, ILTEMP, TOPDWN
INTEGER I, IC, ICOL, IDIST, IENDCH, IINFO, IL, ILDA,
$ IOFFG, IOFFST, IPACK, IPACKG, IR, IR1, IR2,
$ IROW, IRSIGN, ISKEW, ISYM, ISYMPK, J, JC, JCH,
$ JKL, JKU, JR, K, LLB, MINLDA, MNMIN, MR, NC,
$ UUB
DOUBLE PRECISION ALPHA, ANGLE, C, DUMMY, EXTRA, S, TEMP
* ..
* .. External Functions ..
LOGICAL LSAME
DOUBLE PRECISION DLARND
EXTERNAL LSAME, DLARND
* ..
* .. External Subroutines ..
EXTERNAL DCOPY, DLAGGE, DLAGSY, DLAROT, DLARTG, DLASET,
$ DLATM1, DSCAL, XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, COS, DBLE, MAX, MIN, MOD, SIN
* ..
* .. Executable Statements ..
*
* 1) Decode and Test the input parameters.
* Initialize flags & seed.
*
INFO = 0
*
* Quick return if possible
*
IF( M.EQ.0 .OR. N.EQ.0 )
$ RETURN
*
* Decode DIST
*
IF( LSAME( DIST, 'U' ) ) THEN
IDIST = 1
ELSE IF( LSAME( DIST, 'S' ) ) THEN
IDIST = 2
ELSE IF( LSAME( DIST, 'N' ) ) THEN
IDIST = 3
ELSE
IDIST = -1
END IF
*
* Decode SYM
*
IF( LSAME( SYM, 'N' ) ) THEN
ISYM = 1
IRSIGN = 0
ELSE IF( LSAME( SYM, 'P' ) ) THEN
ISYM = 2
IRSIGN = 0
ELSE IF( LSAME( SYM, 'S' ) ) THEN
ISYM = 2
IRSIGN = 1
ELSE IF( LSAME( SYM, 'H' ) ) THEN
ISYM = 2
IRSIGN = 1
ELSE
ISYM = -1
END IF
*
* Decode PACK
*
ISYMPK = 0
IF( LSAME( PACK, 'N' ) ) THEN
IPACK = 0
ELSE IF( LSAME( PACK, 'U' ) ) THEN
IPACK = 1
ISYMPK = 1
ELSE IF( LSAME( PACK, 'L' ) ) THEN
IPACK = 2
ISYMPK = 1
ELSE IF( LSAME( PACK, 'C' ) ) THEN
IPACK = 3
ISYMPK = 2
ELSE IF( LSAME( PACK, 'R' ) ) THEN
IPACK = 4
ISYMPK = 3
ELSE IF( LSAME( PACK, 'B' ) ) THEN
IPACK = 5
ISYMPK = 3
ELSE IF( LSAME( PACK, 'Q' ) ) THEN
IPACK = 6
ISYMPK = 2
ELSE IF( LSAME( PACK, 'Z' ) ) THEN
IPACK = 7
ELSE
IPACK = -1
END IF
*
* Set certain internal parameters
*
MNMIN = MIN( M, N )
LLB = MIN( KL, M-1 )
UUB = MIN( KU, N-1 )
MR = MIN( M, N+LLB )
NC = MIN( N, M+UUB )
*
IF( IPACK.EQ.5 .OR. IPACK.EQ.6 ) THEN
MINLDA = UUB + 1
ELSE IF( IPACK.EQ.7 ) THEN
MINLDA = LLB + UUB + 1
ELSE
MINLDA = M
END IF
*
* Use Givens rotation method if bandwidth small enough,
* or if LDA is too small to store the matrix unpacked.
*
GIVENS = .FALSE.
IF( ISYM.EQ.1 ) THEN
IF( DBLE( LLB+UUB ).LT.0.3D0*DBLE( MAX( 1, MR+NC ) ) )
$ GIVENS = .TRUE.
ELSE
IF( 2*LLB.LT.M )
$ GIVENS = .TRUE.
END IF
IF( LDA.LT.M .AND. LDA.GE.MINLDA )
$ GIVENS = .TRUE.
*
* Set INFO if an error
*
IF( M.LT.0 ) THEN
INFO = -1
ELSE IF( M.NE.N .AND. ISYM.NE.1 ) THEN
INFO = -1
ELSE IF( N.LT.0 ) THEN
INFO = -2
ELSE IF( IDIST.EQ.-1 ) THEN
INFO = -3
ELSE IF( ISYM.EQ.-1 ) THEN
INFO = -5
ELSE IF( ABS( MODE ).GT.6 ) THEN
INFO = -7
ELSE IF( ( MODE.NE.0 .AND. ABS( MODE ).NE.6 ) .AND. COND.LT.ONE )
$ THEN
INFO = -8
ELSE IF( KL.LT.0 ) THEN
INFO = -10
ELSE IF( KU.LT.0 .OR. ( ISYM.NE.1 .AND. KL.NE.KU ) ) THEN
INFO = -11
ELSE IF( IPACK.EQ.-1 .OR. ( ISYMPK.EQ.1 .AND. ISYM.EQ.1 ) .OR.
$ ( ISYMPK.EQ.2 .AND. ISYM.EQ.1 .AND. KL.GT.0 ) .OR.
$ ( ISYMPK.EQ.3 .AND. ISYM.EQ.1 .AND. KU.GT.0 ) .OR.
$ ( ISYMPK.NE.0 .AND. M.NE.N ) ) THEN
INFO = -12
ELSE IF( LDA.LT.MAX( 1, MINLDA ) ) THEN
INFO = -14
END IF
*
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'DLATMS', -INFO )
RETURN
END IF
*
* Initialize random number generator
*
DO 10 I = 1, 4
ISEED( I ) = MOD( ABS( ISEED( I ) ), 4096 )
10 CONTINUE
*
IF( MOD( ISEED( 4 ), 2 ).NE.1 )
$ ISEED( 4 ) = ISEED( 4 ) + 1
*
* 2) Set up D if indicated.
*
* Compute D according to COND and MODE
*
CALL DLATM1( MODE, COND, IRSIGN, IDIST, ISEED, D, MNMIN, IINFO )
IF( IINFO.NE.0 ) THEN
INFO = 1
RETURN
END IF
*
* Choose Top-Down if D is (apparently) increasing,
* Bottom-Up if D is (apparently) decreasing.
*
IF( ABS( D( 1 ) ).LE.ABS( D( MNMIN ) ) ) THEN
TOPDWN = .TRUE.
ELSE
TOPDWN = .FALSE.
END IF
*
IF( MODE.NE.0 .AND. ABS( MODE ).NE.6 ) THEN
*
* Scale by DMAX
*
TEMP = ABS( D( 1 ) )
DO 20 I = 2, MNMIN
TEMP = MAX( TEMP, ABS( D( I ) ) )
20 CONTINUE
*
IF( TEMP.GT.ZERO ) THEN
ALPHA = DMAX / TEMP
ELSE
INFO = 2
RETURN
END IF
*
CALL DSCAL( MNMIN, ALPHA, D, 1 )
*
END IF
*
* 3) Generate Banded Matrix using Givens rotations.
* Also the special case of UUB=LLB=0
*
* Compute Addressing constants to cover all
* storage formats. Whether GE, SY, GB, or SB,
* upper or lower triangle or both,
* the (i,j)-th element is in
* A( i - ISKEW*j + IOFFST, j )
*
IF( IPACK.GT.4 ) THEN
ILDA = LDA - 1
ISKEW = 1
IF( IPACK.GT.5 ) THEN
IOFFST = UUB + 1
ELSE
IOFFST = 1
END IF
ELSE
ILDA = LDA
ISKEW = 0
IOFFST = 0
END IF
*
* IPACKG is the format that the matrix is generated in. If this is
* different from IPACK, then the matrix must be repacked at the
* end. It also signals how to compute the norm, for scaling.
*
IPACKG = 0
CALL DLASET( 'Full', LDA, N, ZERO, ZERO, A, LDA )
*
* Diagonal Matrix -- We are done, unless it
* is to be stored SP/PP/TP (PACK='R' or 'C')
*
IF( LLB.EQ.0 .AND. UUB.EQ.0 ) THEN
CALL DCOPY( MNMIN, D, 1, A( 1-ISKEW+IOFFST, 1 ), ILDA+1 )
IF( IPACK.LE.2 .OR. IPACK.GE.5 )
$ IPACKG = IPACK
*
ELSE IF( GIVENS ) THEN
*
* Check whether to use Givens rotations,
* Householder transformations, or nothing.
*
IF( ISYM.EQ.1 ) THEN
*
* Non-symmetric -- A = U D V
*
IF( IPACK.GT.4 ) THEN
IPACKG = IPACK
ELSE
IPACKG = 0
END IF
*
CALL DCOPY( MNMIN, D, 1, A( 1-ISKEW+IOFFST, 1 ), ILDA+1 )
*
IF( TOPDWN ) THEN
JKL = 0
DO 50 JKU = 1, UUB
*
* Transform from bandwidth JKL, JKU-1 to JKL, JKU
*
* Last row actually rotated is M
* Last column actually rotated is MIN( M+JKU, N )
*
DO 40 JR = 1, MIN( M+JKU, N ) + JKL - 1
EXTRA = ZERO
ANGLE = TWOPI*DLARND( 1, ISEED )
C = COS( ANGLE )
S = SIN( ANGLE )
ICOL = MAX( 1, JR-JKL )
IF( JR.LT.M ) THEN
IL = MIN( N, JR+JKU ) + 1 - ICOL
CALL DLAROT( .TRUE., JR.GT.JKL, .FALSE., IL, C,
$ S, A( JR-ISKEW*ICOL+IOFFST, ICOL ),
$ ILDA, EXTRA, DUMMY )
END IF
*
* Chase "EXTRA" back up
*
IR = JR
IC = ICOL
DO 30 JCH = JR - JKL, 1, -JKL - JKU
IF( IR.LT.M ) THEN
CALL DLARTG( A( IR+1-ISKEW*( IC+1 )+IOFFST,
$ IC+1 ), EXTRA, C, S, DUMMY )
END IF
IROW = MAX( 1, JCH-JKU )
IL = IR + 2 - IROW
TEMP = ZERO
ILTEMP = JCH.GT.JKU
CALL DLAROT( .FALSE., ILTEMP, .TRUE., IL, C, -S,
$ A( IROW-ISKEW*IC+IOFFST, IC ),
$ ILDA, TEMP, EXTRA )
IF( ILTEMP ) THEN
CALL DLARTG( A( IROW+1-ISKEW*( IC+1 )+IOFFST,
$ IC+1 ), TEMP, C, S, DUMMY )
ICOL = MAX( 1, JCH-JKU-JKL )
IL = IC + 2 - ICOL
EXTRA = ZERO
CALL DLAROT( .TRUE., JCH.GT.JKU+JKL, .TRUE.,
$ IL, C, -S, A( IROW-ISKEW*ICOL+
$ IOFFST, ICOL ), ILDA, EXTRA,
$ TEMP )
IC = ICOL
IR = IROW
END IF
30 CONTINUE
40 CONTINUE
50 CONTINUE
*
JKU = UUB
DO 80 JKL = 1, LLB
*
* Transform from bandwidth JKL-1, JKU to JKL, JKU
*
DO 70 JC = 1, MIN( N+JKL, M ) + JKU - 1
EXTRA = ZERO
ANGLE = TWOPI*DLARND( 1, ISEED )
C = COS( ANGLE )
S = SIN( ANGLE )
IROW = MAX( 1, JC-JKU )
IF( JC.LT.N ) THEN
IL = MIN( M, JC+JKL ) + 1 - IROW
CALL DLAROT( .FALSE., JC.GT.JKU, .FALSE., IL, C,
$ S, A( IROW-ISKEW*JC+IOFFST, JC ),
$ ILDA, EXTRA, DUMMY )
END IF
*
* Chase "EXTRA" back up
*
IC = JC
IR = IROW
DO 60 JCH = JC - JKU, 1, -JKL - JKU
IF( IC.LT.N ) THEN
CALL DLARTG( A( IR+1-ISKEW*( IC+1 )+IOFFST,
$ IC+1 ), EXTRA, C, S, DUMMY )
END IF
ICOL = MAX( 1, JCH-JKL )
IL = IC + 2 - ICOL
TEMP = ZERO
ILTEMP = JCH.GT.JKL
CALL DLAROT( .TRUE., ILTEMP, .TRUE., IL, C, -S,
$ A( IR-ISKEW*ICOL+IOFFST, ICOL ),
$ ILDA, TEMP, EXTRA )
IF( ILTEMP ) THEN
CALL DLARTG( A( IR+1-ISKEW*( ICOL+1 )+IOFFST,
$ ICOL+1 ), TEMP, C, S, DUMMY )
IROW = MAX( 1, JCH-JKL-JKU )
IL = IR + 2 - IROW
EXTRA = ZERO
CALL DLAROT( .FALSE., JCH.GT.JKL+JKU, .TRUE.,
$ IL, C, -S, A( IROW-ISKEW*ICOL+
$ IOFFST, ICOL ), ILDA, EXTRA,
$ TEMP )
IC = ICOL
IR = IROW
END IF
60 CONTINUE
70 CONTINUE
80 CONTINUE
*
ELSE
*
* Bottom-Up -- Start at the bottom right.
*
JKL = 0
DO 110 JKU = 1, UUB
*
* Transform from bandwidth JKL, JKU-1 to JKL, JKU
*
* First row actually rotated is M
* First column actually rotated is MIN( M+JKU, N )
*
IENDCH = MIN( M, N+JKL ) - 1
DO 100 JC = MIN( M+JKU, N ) - 1, 1 - JKL, -1
EXTRA = ZERO
ANGLE = TWOPI*DLARND( 1, ISEED )
C = COS( ANGLE )
S = SIN( ANGLE )
IROW = MAX( 1, JC-JKU+1 )
IF( JC.GT.0 ) THEN
IL = MIN( M, JC+JKL+1 ) + 1 - IROW
CALL DLAROT( .FALSE., .FALSE., JC+JKL.LT.M, IL,
$ C, S, A( IROW-ISKEW*JC+IOFFST,
$ JC ), ILDA, DUMMY, EXTRA )
END IF
*
* Chase "EXTRA" back down
*
IC = JC
DO 90 JCH = JC + JKL, IENDCH, JKL + JKU
ILEXTR = IC.GT.0
IF( ILEXTR ) THEN
CALL DLARTG( A( JCH-ISKEW*IC+IOFFST, IC ),
$ EXTRA, C, S, DUMMY )
END IF
IC = MAX( 1, IC )
ICOL = MIN( N-1, JCH+JKU )
ILTEMP = JCH + JKU.LT.N
TEMP = ZERO
CALL DLAROT( .TRUE., ILEXTR, ILTEMP, ICOL+2-IC,
$ C, S, A( JCH-ISKEW*IC+IOFFST, IC ),
$ ILDA, EXTRA, TEMP )
IF( ILTEMP ) THEN
CALL DLARTG( A( JCH-ISKEW*ICOL+IOFFST,
$ ICOL ), TEMP, C, S, DUMMY )
IL = MIN( IENDCH, JCH+JKL+JKU ) + 2 - JCH
EXTRA = ZERO
CALL DLAROT( .FALSE., .TRUE.,
$ JCH+JKL+JKU.LE.IENDCH, IL, C, S,
$ A( JCH-ISKEW*ICOL+IOFFST,
$ ICOL ), ILDA, TEMP, EXTRA )
IC = ICOL
END IF
90 CONTINUE
100 CONTINUE
110 CONTINUE
*
JKU = UUB
DO 140 JKL = 1, LLB
*
* Transform from bandwidth JKL-1, JKU to JKL, JKU
*
* First row actually rotated is MIN( N+JKL, M )
* First column actually rotated is N
*
IENDCH = MIN( N, M+JKU ) - 1
DO 130 JR = MIN( N+JKL, M ) - 1, 1 - JKU, -1
EXTRA = ZERO
ANGLE = TWOPI*DLARND( 1, ISEED )
C = COS( ANGLE )
S = SIN( ANGLE )
ICOL = MAX( 1, JR-JKL+1 )
IF( JR.GT.0 ) THEN
IL = MIN( N, JR+JKU+1 ) + 1 - ICOL
CALL DLAROT( .TRUE., .FALSE., JR+JKU.LT.N, IL,
$ C, S, A( JR-ISKEW*ICOL+IOFFST,
$ ICOL ), ILDA, DUMMY, EXTRA )
END IF
*
* Chase "EXTRA" back down
*
IR = JR
DO 120 JCH = JR + JKU, IENDCH, JKL + JKU
ILEXTR = IR.GT.0
IF( ILEXTR ) THEN
CALL DLARTG( A( IR-ISKEW*JCH+IOFFST, JCH ),
$ EXTRA, C, S, DUMMY )
END IF
IR = MAX( 1, IR )
IROW = MIN( M-1, JCH+JKL )
ILTEMP = JCH + JKL.LT.M
TEMP = ZERO
CALL DLAROT( .FALSE., ILEXTR, ILTEMP, IROW+2-IR,
$ C, S, A( IR-ISKEW*JCH+IOFFST,
$ JCH ), ILDA, EXTRA, TEMP )
IF( ILTEMP ) THEN
CALL DLARTG( A( IROW-ISKEW*JCH+IOFFST, JCH ),
$ TEMP, C, S, DUMMY )
IL = MIN( IENDCH, JCH+JKL+JKU ) + 2 - JCH
EXTRA = ZERO
CALL DLAROT( .TRUE., .TRUE.,
$ JCH+JKL+JKU.LE.IENDCH, IL, C, S,
$ A( IROW-ISKEW*JCH+IOFFST, JCH ),
$ ILDA, TEMP, EXTRA )
IR = IROW
END IF
120 CONTINUE
130 CONTINUE
140 CONTINUE
END IF
*
ELSE
*
* Symmetric -- A = U D U'
*
IPACKG = IPACK
IOFFG = IOFFST
*
IF( TOPDWN ) THEN
*
* Top-Down -- Generate Upper triangle only
*
IF( IPACK.GE.5 ) THEN
IPACKG = 6
IOFFG = UUB + 1
ELSE
IPACKG = 1
END IF
CALL DCOPY( MNMIN, D, 1, A( 1-ISKEW+IOFFG, 1 ), ILDA+1 )
*
DO 170 K = 1, UUB
DO 160 JC = 1, N - 1
IROW = MAX( 1, JC-K )
IL = MIN( JC+1, K+2 )
EXTRA = ZERO
TEMP = A( JC-ISKEW*( JC+1 )+IOFFG, JC+1 )
ANGLE = TWOPI*DLARND( 1, ISEED )
C = COS( ANGLE )
S = SIN( ANGLE )
CALL DLAROT( .FALSE., JC.GT.K, .TRUE., IL, C, S,
$ A( IROW-ISKEW*JC+IOFFG, JC ), ILDA,
$ EXTRA, TEMP )
CALL DLAROT( .TRUE., .TRUE., .FALSE.,
$ MIN( K, N-JC )+1, C, S,
$ A( ( 1-ISKEW )*JC+IOFFG, JC ), ILDA,
$ TEMP, DUMMY )
*
* Chase EXTRA back up the matrix
*
ICOL = JC
DO 150 JCH = JC - K, 1, -K
CALL DLARTG( A( JCH+1-ISKEW*( ICOL+1 )+IOFFG,
$ ICOL+1 ), EXTRA, C, S, DUMMY )
TEMP = A( JCH-ISKEW*( JCH+1 )+IOFFG, JCH+1 )
CALL DLAROT( .TRUE., .TRUE., .TRUE., K+2, C, -S,
$ A( ( 1-ISKEW )*JCH+IOFFG, JCH ),
$ ILDA, TEMP, EXTRA )
IROW = MAX( 1, JCH-K )
IL = MIN( JCH+1, K+2 )
EXTRA = ZERO
CALL DLAROT( .FALSE., JCH.GT.K, .TRUE., IL, C,
$ -S, A( IROW-ISKEW*JCH+IOFFG, JCH ),
$ ILDA, EXTRA, TEMP )
ICOL = JCH
150 CONTINUE
160 CONTINUE
170 CONTINUE
*
* If we need lower triangle, copy from upper. Note that
* the order of copying is chosen to work for 'q' -> 'b'
*
IF( IPACK.NE.IPACKG .AND. IPACK.NE.3 ) THEN
DO 190 JC = 1, N
IROW = IOFFST - ISKEW*JC
DO 180 JR = JC, MIN( N, JC+UUB )
A( JR+IROW, JC ) = A( JC-ISKEW*JR+IOFFG, JR )
180 CONTINUE
190 CONTINUE
IF( IPACK.EQ.5 ) THEN
DO 210 JC = N - UUB + 1, N
DO 200 JR = N + 2 - JC, UUB + 1
A( JR, JC ) = ZERO
200 CONTINUE
210 CONTINUE
END IF
IF( IPACKG.EQ.6 ) THEN
IPACKG = IPACK
ELSE
IPACKG = 0
END IF
END IF
ELSE
*
* Bottom-Up -- Generate Lower triangle only
*
IF( IPACK.GE.5 ) THEN
IPACKG = 5
IF( IPACK.EQ.6 )
$ IOFFG = 1
ELSE
IPACKG = 2
END IF
CALL DCOPY( MNMIN, D, 1, A( 1-ISKEW+IOFFG, 1 ), ILDA+1 )
*
DO 240 K = 1, UUB
DO 230 JC = N - 1, 1, -1
IL = MIN( N+1-JC, K+2 )
EXTRA = ZERO
TEMP = A( 1+( 1-ISKEW )*JC+IOFFG, JC )
ANGLE = TWOPI*DLARND( 1, ISEED )
C = COS( ANGLE )
S = -SIN( ANGLE )
CALL DLAROT( .FALSE., .TRUE., N-JC.GT.K, IL, C, S,
$ A( ( 1-ISKEW )*JC+IOFFG, JC ), ILDA,
$ TEMP, EXTRA )
ICOL = MAX( 1, JC-K+1 )
CALL DLAROT( .TRUE., .FALSE., .TRUE., JC+2-ICOL, C,
$ S, A( JC-ISKEW*ICOL+IOFFG, ICOL ),
$ ILDA, DUMMY, TEMP )
*
* Chase EXTRA back down the matrix
*
ICOL = JC
DO 220 JCH = JC + K, N - 1, K
CALL DLARTG( A( JCH-ISKEW*ICOL+IOFFG, ICOL ),
$ EXTRA, C, S, DUMMY )
TEMP = A( 1+( 1-ISKEW )*JCH+IOFFG, JCH )
CALL DLAROT( .TRUE., .TRUE., .TRUE., K+2, C, S,
$ A( JCH-ISKEW*ICOL+IOFFG, ICOL ),
$ ILDA, EXTRA, TEMP )
IL = MIN( N+1-JCH, K+2 )
EXTRA = ZERO
CALL DLAROT( .FALSE., .TRUE., N-JCH.GT.K, IL, C,
$ S, A( ( 1-ISKEW )*JCH+IOFFG, JCH ),
$ ILDA, TEMP, EXTRA )
ICOL = JCH
220 CONTINUE
230 CONTINUE
240 CONTINUE
*
* If we need upper triangle, copy from lower. Note that
* the order of copying is chosen to work for 'b' -> 'q'
*
IF( IPACK.NE.IPACKG .AND. IPACK.NE.4 ) THEN
DO 260 JC = N, 1, -1
IROW = IOFFST - ISKEW*JC
DO 250 JR = JC, MAX( 1, JC-UUB ), -1
A( JR+IROW, JC ) = A( JC-ISKEW*JR+IOFFG, JR )
250 CONTINUE
260 CONTINUE
IF( IPACK.EQ.6 ) THEN
DO 280 JC = 1, UUB
DO 270 JR = 1, UUB + 1 - JC
A( JR, JC ) = ZERO
270 CONTINUE
280 CONTINUE
END IF
IF( IPACKG.EQ.5 ) THEN
IPACKG = IPACK
ELSE
IPACKG = 0
END IF
END IF
END IF
END IF
*
ELSE
*
* 4) Generate Banded Matrix by first
* Rotating by random Unitary matrices,
* then reducing the bandwidth using Householder
* transformations.
*
* Note: we should get here only if LDA .ge. N
*
IF( ISYM.EQ.1 ) THEN
*
* Non-symmetric -- A = U D V
*
CALL DLAGGE( MR, NC, LLB, UUB, D, A, LDA, ISEED, WORK,
$ IINFO )
ELSE
*
* Symmetric -- A = U D U'
*
CALL DLAGSY( M, LLB, D, A, LDA, ISEED, WORK, IINFO )
*
END IF
IF( IINFO.NE.0 ) THEN
INFO = 3
RETURN
END IF
END IF
*
* 5) Pack the matrix
*
IF( IPACK.NE.IPACKG ) THEN
IF( IPACK.EQ.1 ) THEN
*
* 'U' -- Upper triangular, not packed
*
DO 300 J = 1, M
DO 290 I = J + 1, M
A( I, J ) = ZERO
290 CONTINUE
300 CONTINUE
*
ELSE IF( IPACK.EQ.2 ) THEN
*
* 'L' -- Lower triangular, not packed
*
DO 320 J = 2, M
DO 310 I = 1, J - 1
A( I, J ) = ZERO
310 CONTINUE
320 CONTINUE
*
ELSE IF( IPACK.EQ.3 ) THEN
*
* 'C' -- Upper triangle packed Columnwise.
*
ICOL = 1
IROW = 0
DO 340 J = 1, M
DO 330 I = 1, J
IROW = IROW + 1
IF( IROW.GT.LDA ) THEN
IROW = 1
ICOL = ICOL + 1
END IF
A( IROW, ICOL ) = A( I, J )
330 CONTINUE
340 CONTINUE
*
ELSE IF( IPACK.EQ.4 ) THEN
*
* 'R' -- Lower triangle packed Columnwise.
*
ICOL = 1
IROW = 0
DO 360 J = 1, M
DO 350 I = J, M
IROW = IROW + 1
IF( IROW.GT.LDA ) THEN
IROW = 1
ICOL = ICOL + 1
END IF
A( IROW, ICOL ) = A( I, J )
350 CONTINUE
360 CONTINUE
*
ELSE IF( IPACK.GE.5 ) THEN
*
* 'B' -- The lower triangle is packed as a band matrix.
* 'Q' -- The upper triangle is packed as a band matrix.
* 'Z' -- The whole matrix is packed as a band matrix.
*
IF( IPACK.EQ.5 )
$ UUB = 0
IF( IPACK.EQ.6 )
$ LLB = 0
*
DO 380 J = 1, UUB
DO 370 I = MIN( J+LLB, M ), 1, -1
A( I-J+UUB+1, J ) = A( I, J )
370 CONTINUE
380 CONTINUE
*
DO 400 J = UUB + 2, N
DO 390 I = J - UUB, MIN( J+LLB, M )
A( I-J+UUB+1, J ) = A( I, J )
390 CONTINUE
400 CONTINUE
END IF
*
* If packed, zero out extraneous elements.
*
* Symmetric/Triangular Packed --
* zero out everything after A(IROW,ICOL)
*
IF( IPACK.EQ.3 .OR. IPACK.EQ.4 ) THEN
DO 420 JC = ICOL, M
DO 410 JR = IROW + 1, LDA
A( JR, JC ) = ZERO
410 CONTINUE
IROW = 0
420 CONTINUE
*
ELSE IF( IPACK.GE.5 ) THEN
*
* Packed Band --
* 1st row is now in A( UUB+2-j, j), zero above it
* m-th row is now in A( M+UUB-j,j), zero below it
* last non-zero diagonal is now in A( UUB+LLB+1,j ),
* zero below it, too.
*
IR1 = UUB + LLB + 2
IR2 = UUB + M + 2
DO 450 JC = 1, N
DO 430 JR = 1, UUB + 1 - JC
A( JR, JC ) = ZERO
430 CONTINUE
DO 440 JR = MAX( 1, MIN( IR1, IR2-JC ) ), LDA
A( JR, JC ) = ZERO
440 CONTINUE
450 CONTINUE
END IF
END IF
*
RETURN
*
* End of DLATMS
*
END
|