1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
|
SUBROUTINE DORMTR( SIDE, UPLO, TRANS, M, N, A, LDA, TAU, C, LDC,
$ WORK, LWORK, INFO )
*
* -- LAPACK routine (version 3.0) --
* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
* Courant Institute, Argonne National Lab, and Rice University
* June 30, 1999
*
* .. Scalar Arguments ..
CHARACTER SIDE, TRANS, UPLO
INTEGER INFO, LDA, LDC, LWORK, M, N
* ..
* .. Array Arguments ..
DOUBLE PRECISION A( LDA, * ), C( LDC, * ), TAU( * ), WORK( * )
* ..
*
* Purpose
* =======
*
* DORMTR overwrites the general real M-by-N matrix C with
*
* SIDE = 'L' SIDE = 'R'
* TRANS = 'N': Q * C C * Q
* TRANS = 'T': Q**T * C C * Q**T
*
* where Q is a real orthogonal matrix of order nq, with nq = m if
* SIDE = 'L' and nq = n if SIDE = 'R'. Q is defined as the product of
* nq-1 elementary reflectors, as returned by DSYTRD:
*
* if UPLO = 'U', Q = H(nq-1) . . . H(2) H(1);
*
* if UPLO = 'L', Q = H(1) H(2) . . . H(nq-1).
*
* Arguments
* =========
*
* SIDE (input) CHARACTER*1
* = 'L': apply Q or Q**T from the Left;
* = 'R': apply Q or Q**T from the Right.
*
* UPLO (input) CHARACTER*1
* = 'U': Upper triangle of A contains elementary reflectors
* from DSYTRD;
* = 'L': Lower triangle of A contains elementary reflectors
* from DSYTRD.
*
* TRANS (input) CHARACTER*1
* = 'N': No transpose, apply Q;
* = 'T': Transpose, apply Q**T.
*
* M (input) INTEGER
* The number of rows of the matrix C. M >= 0.
*
* N (input) INTEGER
* The number of columns of the matrix C. N >= 0.
*
* A (input) DOUBLE PRECISION array, dimension
* (LDA,M) if SIDE = 'L'
* (LDA,N) if SIDE = 'R'
* The vectors which define the elementary reflectors, as
* returned by DSYTRD.
*
* LDA (input) INTEGER
* The leading dimension of the array A.
* LDA >= max(1,M) if SIDE = 'L'; LDA >= max(1,N) if SIDE = 'R'.
*
* TAU (input) DOUBLE PRECISION array, dimension
* (M-1) if SIDE = 'L'
* (N-1) if SIDE = 'R'
* TAU(i) must contain the scalar factor of the elementary
* reflector H(i), as returned by DSYTRD.
*
* C (input/output) DOUBLE PRECISION array, dimension (LDC,N)
* On entry, the M-by-N matrix C.
* On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q.
*
* LDC (input) INTEGER
* The leading dimension of the array C. LDC >= max(1,M).
*
* WORK (workspace/output) DOUBLE PRECISION array, dimension (LWORK)
* On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
*
* LWORK (input) INTEGER
* The dimension of the array WORK.
* If SIDE = 'L', LWORK >= max(1,N);
* if SIDE = 'R', LWORK >= max(1,M).
* For optimum performance LWORK >= N*NB if SIDE = 'L', and
* LWORK >= M*NB if SIDE = 'R', where NB is the optimal
* blocksize.
*
* If LWORK = -1, then a workspace query is assumed; the routine
* only calculates the optimal size of the WORK array, returns
* this value as the first entry of the WORK array, and no error
* message related to LWORK is issued by XERBLA.
*
* INFO (output) INTEGER
* = 0: successful exit
* < 0: if INFO = -i, the i-th argument had an illegal value
*
* =====================================================================
*
* .. Local Scalars ..
LOGICAL LEFT, LQUERY, UPPER
INTEGER I1, I2, IINFO, LWKOPT, MI, NB, NI, NQ, NW
* ..
* .. External Functions ..
LOGICAL LSAME
INTEGER ILAENV
EXTERNAL LSAME, ILAENV
* ..
* .. External Subroutines ..
EXTERNAL DORMQL, DORMQR, XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX
* ..
* .. Executable Statements ..
*
* Test the input arguments
*
INFO = 0
LEFT = LSAME( SIDE, 'L' )
UPPER = LSAME( UPLO, 'U' )
LQUERY = ( LWORK.EQ.-1 )
*
* NQ is the order of Q and NW is the minimum dimension of WORK
*
IF( LEFT ) THEN
NQ = M
NW = N
ELSE
NQ = N
NW = M
END IF
IF( .NOT.LEFT .AND. .NOT.LSAME( SIDE, 'R' ) ) THEN
INFO = -1
ELSE IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
INFO = -2
ELSE IF( .NOT.LSAME( TRANS, 'N' ) .AND. .NOT.LSAME( TRANS, 'T' ) )
$ THEN
INFO = -3
ELSE IF( M.LT.0 ) THEN
INFO = -4
ELSE IF( N.LT.0 ) THEN
INFO = -5
ELSE IF( LDA.LT.MAX( 1, NQ ) ) THEN
INFO = -7
ELSE IF( LDC.LT.MAX( 1, M ) ) THEN
INFO = -10
ELSE IF( LWORK.LT.MAX( 1, NW ) .AND. .NOT.LQUERY ) THEN
INFO = -12
END IF
*
IF( INFO.EQ.0 ) THEN
IF( UPPER ) THEN
IF( LEFT ) THEN
NB = ILAENV( 1, 'DORMQL', SIDE // TRANS, M-1, N, M-1,
$ -1 )
ELSE
NB = ILAENV( 1, 'DORMQL', SIDE // TRANS, M, N-1, N-1,
$ -1 )
END IF
ELSE
IF( LEFT ) THEN
NB = ILAENV( 1, 'DORMQR', SIDE // TRANS, M-1, N, M-1,
$ -1 )
ELSE
NB = ILAENV( 1, 'DORMQR', SIDE // TRANS, M, N-1, N-1,
$ -1 )
END IF
END IF
LWKOPT = MAX( 1, NW )*NB
WORK( 1 ) = LWKOPT
END IF
*
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'DORMTR', -INFO )
RETURN
ELSE IF( LQUERY ) THEN
RETURN
END IF
*
* Quick return if possible
*
IF( M.EQ.0 .OR. N.EQ.0 .OR. NQ.EQ.1 ) THEN
WORK( 1 ) = 1
RETURN
END IF
*
IF( LEFT ) THEN
MI = M - 1
NI = N
ELSE
MI = M
NI = N - 1
END IF
*
IF( UPPER ) THEN
*
* Q was determined by a call to DSYTRD with UPLO = 'U'
*
CALL DORMQL( SIDE, TRANS, MI, NI, NQ-1, A( 1, 2 ), LDA, TAU, C,
$ LDC, WORK, LWORK, IINFO )
ELSE
*
* Q was determined by a call to DSYTRD with UPLO = 'L'
*
IF( LEFT ) THEN
I1 = 2
I2 = 1
ELSE
I1 = 1
I2 = 2
END IF
CALL DORMQR( SIDE, TRANS, MI, NI, NQ-1, A( 2, 1 ), LDA, TAU,
$ C( I1, I2 ), LDC, WORK, LWORK, IINFO )
END IF
WORK( 1 ) = LWKOPT
RETURN
*
* End of DORMTR
*
END
|