1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
|
SUBROUTINE DPTTRF( N, D, E, INFO )
*
* -- LAPACK routine (version 3.0) --
* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
* Courant Institute, Argonne National Lab, and Rice University
* June 30, 1999
*
* .. Scalar Arguments ..
INTEGER INFO, N
* ..
* .. Array Arguments ..
DOUBLE PRECISION D( * ), E( * )
* ..
*
* Purpose
* =======
*
* DPTTRF computes the L*D*L' factorization of a real symmetric
* positive definite tridiagonal matrix A. The factorization may also
* be regarded as having the form A = U'*D*U.
*
* Arguments
* =========
*
* N (input) INTEGER
* The order of the matrix A. N >= 0.
*
* D (input/output) DOUBLE PRECISION array, dimension (N)
* On entry, the n diagonal elements of the tridiagonal matrix
* A. On exit, the n diagonal elements of the diagonal matrix
* D from the L*D*L' factorization of A.
*
* E (input/output) DOUBLE PRECISION array, dimension (N-1)
* On entry, the (n-1) subdiagonal elements of the tridiagonal
* matrix A. On exit, the (n-1) subdiagonal elements of the
* unit bidiagonal factor L from the L*D*L' factorization of A.
* E can also be regarded as the superdiagonal of the unit
* bidiagonal factor U from the U'*D*U factorization of A.
*
* INFO (output) INTEGER
* = 0: successful exit
* < 0: if INFO = -k, the k-th argument had an illegal value
* > 0: if INFO = k, the leading minor of order k is not
* positive definite; if k < N, the factorization could not
* be completed, while if k = N, the factorization was
* completed, but D(N) = 0.
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ZERO
PARAMETER ( ZERO = 0.0D+0 )
* ..
* .. Local Scalars ..
INTEGER I, I4
DOUBLE PRECISION EI
* ..
* .. External Subroutines ..
EXTERNAL XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC MOD
* ..
* .. Executable Statements ..
*
* Test the input parameters.
*
INFO = 0
IF( N.LT.0 ) THEN
INFO = -1
CALL XERBLA( 'DPTTRF', -INFO )
RETURN
END IF
*
* Quick return if possible
*
IF( N.EQ.0 )
$ RETURN
*
* Compute the L*D*L' (or U'*D*U) factorization of A.
*
I4 = MOD( N-1, 4 )
DO 10 I = 1, I4
IF( D( I ).LE.ZERO ) THEN
INFO = I
GO TO 30
END IF
EI = E( I )
E( I ) = EI / D( I )
D( I+1 ) = D( I+1 ) - E( I )*EI
10 CONTINUE
*
DO 20 I = I4 + 1, N - 4, 4
*
* Drop out of the loop if d(i) <= 0: the matrix is not positive
* definite.
*
IF( D( I ).LE.ZERO ) THEN
INFO = I
GO TO 30
END IF
*
* Solve for e(i) and d(i+1).
*
EI = E( I )
E( I ) = EI / D( I )
D( I+1 ) = D( I+1 ) - E( I )*EI
*
IF( D( I+1 ).LE.ZERO ) THEN
INFO = I + 1
GO TO 30
END IF
*
* Solve for e(i+1) and d(i+2).
*
EI = E( I+1 )
E( I+1 ) = EI / D( I+1 )
D( I+2 ) = D( I+2 ) - E( I+1 )*EI
*
IF( D( I+2 ).LE.ZERO ) THEN
INFO = I + 2
GO TO 30
END IF
*
* Solve for e(i+2) and d(i+3).
*
EI = E( I+2 )
E( I+2 ) = EI / D( I+2 )
D( I+3 ) = D( I+3 ) - E( I+2 )*EI
*
IF( D( I+3 ).LE.ZERO ) THEN
INFO = I + 3
GO TO 30
END IF
*
* Solve for e(i+3) and d(i+4).
*
EI = E( I+3 )
E( I+3 ) = EI / D( I+3 )
D( I+4 ) = D( I+4 ) - E( I+3 )*EI
20 CONTINUE
*
* Check d(n) for positive definiteness.
*
IF( D( N ).LE.ZERO )
$ INFO = N
*
30 CONTINUE
RETURN
*
* End of DPTTRF
*
END
|