1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
|
SUBROUTINE SGETRS( TRANS, N, NRHS, A, LDA, IPIV, B, LDB, INFO )
*
* -- LAPACK routine (version 3.0) --
* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
* Courant Institute, Argonne National Lab, and Rice University
* March 31, 1993
*
* .. Scalar Arguments ..
CHARACTER TRANS
INTEGER INFO, LDA, LDB, N, NRHS
* ..
* .. Array Arguments ..
INTEGER IPIV( * )
REAL A( LDA, * ), B( LDB, * )
* ..
*
* Purpose
* =======
*
* SGETRS solves a system of linear equations
* A * X = B or A' * X = B
* with a general N-by-N matrix A using the LU factorization computed
* by SGETRF.
*
* Arguments
* =========
*
* TRANS (input) CHARACTER*1
* Specifies the form of the system of equations:
* = 'N': A * X = B (No transpose)
* = 'T': A'* X = B (Transpose)
* = 'C': A'* X = B (Conjugate transpose = Transpose)
*
* N (input) INTEGER
* The order of the matrix A. N >= 0.
*
* NRHS (input) INTEGER
* The number of right hand sides, i.e., the number of columns
* of the matrix B. NRHS >= 0.
*
* A (input) REAL array, dimension (LDA,N)
* The factors L and U from the factorization A = P*L*U
* as computed by SGETRF.
*
* LDA (input) INTEGER
* The leading dimension of the array A. LDA >= max(1,N).
*
* IPIV (input) INTEGER array, dimension (N)
* The pivot indices from SGETRF; for 1<=i<=N, row i of the
* matrix was interchanged with row IPIV(i).
*
* B (input/output) REAL array, dimension (LDB,NRHS)
* On entry, the right hand side matrix B.
* On exit, the solution matrix X.
*
* LDB (input) INTEGER
* The leading dimension of the array B. LDB >= max(1,N).
*
* INFO (output) INTEGER
* = 0: successful exit
* < 0: if INFO = -i, the i-th argument had an illegal value
*
* =====================================================================
*
* .. Parameters ..
REAL ONE
PARAMETER ( ONE = 1.0E+0 )
* ..
* .. Local Scalars ..
LOGICAL NOTRAN
* ..
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
* ..
* .. External Subroutines ..
EXTERNAL SLASWP, STRSM, XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX
* ..
* .. Executable Statements ..
*
* Test the input parameters.
*
INFO = 0
NOTRAN = LSAME( TRANS, 'N' )
IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
$ LSAME( TRANS, 'C' ) ) THEN
INFO = -1
ELSE IF( N.LT.0 ) THEN
INFO = -2
ELSE IF( NRHS.LT.0 ) THEN
INFO = -3
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -5
ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
INFO = -8
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'SGETRS', -INFO )
RETURN
END IF
*
* Quick return if possible
*
IF( N.EQ.0 .OR. NRHS.EQ.0 )
$ RETURN
*
IF( NOTRAN ) THEN
*
* Solve A * X = B.
*
* Apply row interchanges to the right hand sides.
*
CALL SLASWP( NRHS, B, LDB, 1, N, IPIV, 1 )
*
* Solve L*X = B, overwriting B with X.
*
CALL STRSM( 'Left', 'Lower', 'No transpose', 'Unit', N, NRHS,
$ ONE, A, LDA, B, LDB )
*
* Solve U*X = B, overwriting B with X.
*
CALL STRSM( 'Left', 'Upper', 'No transpose', 'Non-unit', N,
$ NRHS, ONE, A, LDA, B, LDB )
ELSE
*
* Solve A' * X = B.
*
* Solve U'*X = B, overwriting B with X.
*
CALL STRSM( 'Left', 'Upper', 'Transpose', 'Non-unit', N, NRHS,
$ ONE, A, LDA, B, LDB )
*
* Solve L'*X = B, overwriting B with X.
*
CALL STRSM( 'Left', 'Lower', 'Transpose', 'Unit', N, NRHS, ONE,
$ A, LDA, B, LDB )
*
* Apply row interchanges to the solution vectors.
*
CALL SLASWP( NRHS, B, LDB, 1, N, IPIV, -1 )
END IF
*
RETURN
*
* End of SGETRS
*
END
|